Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmeasmono Structured version   Visualization version   GIF version

Theorem pmeasmono 30386
Description: This theorem's hypotheses define a pre-measure. A pre-measure is monotone. (Contributed by Thierry Arnoux, 19-Jul-2020.)
Hypotheses
Ref Expression
caraext.1 (𝜑𝑃:𝑅⟶(0[,]+∞))
caraext.2 (𝜑 → (𝑃‘∅) = 0)
caraext.3 ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦))
pmeasmono.1 (𝜑𝐴𝑅)
pmeasmono.2 (𝜑𝐵𝑅)
pmeasmono.3 (𝜑 → (𝐵𝐴) ∈ 𝑅)
pmeasmono.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
pmeasmono (𝜑 → (𝑃𝐴) ≤ (𝑃𝐵))
Distinct variable groups:   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem pmeasmono
StepHypRef Expression
1 eqimss 3657 . . . . . . 7 (𝐴 = (𝐵𝐴) → 𝐴 ⊆ (𝐵𝐴))
2 ssdifeq0 4051 . . . . . . 7 (𝐴 ⊆ (𝐵𝐴) ↔ 𝐴 = ∅)
31, 2sylib 208 . . . . . 6 (𝐴 = (𝐵𝐴) → 𝐴 = ∅)
43fveq2d 6195 . . . . 5 (𝐴 = (𝐵𝐴) → (𝑃𝐴) = (𝑃‘∅))
54adantl 482 . . . 4 ((𝜑𝐴 = (𝐵𝐴)) → (𝑃𝐴) = (𝑃‘∅))
6 caraext.2 . . . . 5 (𝜑 → (𝑃‘∅) = 0)
76adantr 481 . . . 4 ((𝜑𝐴 = (𝐵𝐴)) → (𝑃‘∅) = 0)
85, 7eqtrd 2656 . . 3 ((𝜑𝐴 = (𝐵𝐴)) → (𝑃𝐴) = 0)
9 caraext.1 . . . . . 6 (𝜑𝑃:𝑅⟶(0[,]+∞))
10 pmeasmono.2 . . . . . 6 (𝜑𝐵𝑅)
119, 10ffvelrnd 6360 . . . . 5 (𝜑 → (𝑃𝐵) ∈ (0[,]+∞))
12 elxrge0 12281 . . . . . 6 ((𝑃𝐵) ∈ (0[,]+∞) ↔ ((𝑃𝐵) ∈ ℝ* ∧ 0 ≤ (𝑃𝐵)))
1312simprbi 480 . . . . 5 ((𝑃𝐵) ∈ (0[,]+∞) → 0 ≤ (𝑃𝐵))
1411, 13syl 17 . . . 4 (𝜑 → 0 ≤ (𝑃𝐵))
1514adantr 481 . . 3 ((𝜑𝐴 = (𝐵𝐴)) → 0 ≤ (𝑃𝐵))
168, 15eqbrtrd 4675 . 2 ((𝜑𝐴 = (𝐵𝐴)) → (𝑃𝐴) ≤ (𝑃𝐵))
17 iccssxr 12256 . . . . 5 (0[,]+∞) ⊆ ℝ*
189adantr 481 . . . . . 6 ((𝜑𝐴 ≠ (𝐵𝐴)) → 𝑃:𝑅⟶(0[,]+∞))
19 pmeasmono.1 . . . . . . 7 (𝜑𝐴𝑅)
2019adantr 481 . . . . . 6 ((𝜑𝐴 ≠ (𝐵𝐴)) → 𝐴𝑅)
2118, 20ffvelrnd 6360 . . . . 5 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃𝐴) ∈ (0[,]+∞))
2217, 21sseldi 3601 . . . 4 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃𝐴) ∈ ℝ*)
23 pmeasmono.3 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ 𝑅)
2423adantr 481 . . . . 5 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝐵𝐴) ∈ 𝑅)
2518, 24ffvelrnd 6360 . . . 4 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃‘(𝐵𝐴)) ∈ (0[,]+∞))
26 xrge0addge 29522 . . . 4 (((𝑃𝐴) ∈ ℝ* ∧ (𝑃‘(𝐵𝐴)) ∈ (0[,]+∞)) → (𝑃𝐴) ≤ ((𝑃𝐴) +𝑒 (𝑃‘(𝐵𝐴))))
2722, 25, 26syl2anc 693 . . 3 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃𝐴) ≤ ((𝑃𝐴) +𝑒 (𝑃‘(𝐵𝐴))))
28 prct 29492 . . . . . . . 8 ((𝐴𝑅 ∧ (𝐵𝐴) ∈ 𝑅) → {𝐴, (𝐵𝐴)} ≼ ω)
2919, 23, 28syl2anc 693 . . . . . . 7 (𝜑 → {𝐴, (𝐵𝐴)} ≼ ω)
3029adantr 481 . . . . . 6 ((𝜑𝐴 ≠ (𝐵𝐴)) → {𝐴, (𝐵𝐴)} ≼ ω)
31 prssi 4353 . . . . . . . 8 ((𝐴𝑅 ∧ (𝐵𝐴) ∈ 𝑅) → {𝐴, (𝐵𝐴)} ⊆ 𝑅)
3219, 23, 31syl2anc 693 . . . . . . 7 (𝜑 → {𝐴, (𝐵𝐴)} ⊆ 𝑅)
3332adantr 481 . . . . . 6 ((𝜑𝐴 ≠ (𝐵𝐴)) → {𝐴, (𝐵𝐴)} ⊆ 𝑅)
34 disjdif 4040 . . . . . . 7 (𝐴 ∩ (𝐵𝐴)) = ∅
35 simpr 477 . . . . . . . 8 ((𝜑𝐴 ≠ (𝐵𝐴)) → 𝐴 ≠ (𝐵𝐴))
36 id 22 . . . . . . . . 9 (𝑦 = 𝐴𝑦 = 𝐴)
37 id 22 . . . . . . . . 9 (𝑦 = (𝐵𝐴) → 𝑦 = (𝐵𝐴))
3836, 37disjprg 4648 . . . . . . . 8 ((𝐴𝑅 ∧ (𝐵𝐴) ∈ 𝑅𝐴 ≠ (𝐵𝐴)) → (Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦 ↔ (𝐴 ∩ (𝐵𝐴)) = ∅))
3920, 24, 35, 38syl3anc 1326 . . . . . . 7 ((𝜑𝐴 ≠ (𝐵𝐴)) → (Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦 ↔ (𝐴 ∩ (𝐵𝐴)) = ∅))
4034, 39mpbiri 248 . . . . . 6 ((𝜑𝐴 ≠ (𝐵𝐴)) → Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)
4130, 33, 403jca 1242 . . . . 5 ((𝜑𝐴 ≠ (𝐵𝐴)) → ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦))
42 prex 4909 . . . . . . 7 {𝐴, (𝐵𝐴)} ∈ V
43 biidd 252 . . . . . . . . . 10 (𝑥 = {𝐴, (𝐵𝐴)} → (𝜑𝜑))
44 breq1 4656 . . . . . . . . . . 11 (𝑥 = {𝐴, (𝐵𝐴)} → (𝑥 ≼ ω ↔ {𝐴, (𝐵𝐴)} ≼ ω))
45 sseq1 3626 . . . . . . . . . . 11 (𝑥 = {𝐴, (𝐵𝐴)} → (𝑥𝑅 ↔ {𝐴, (𝐵𝐴)} ⊆ 𝑅))
46 disjeq1 4627 . . . . . . . . . . 11 (𝑥 = {𝐴, (𝐵𝐴)} → (Disj 𝑦𝑥 𝑦Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦))
4744, 45, 463anbi123d 1399 . . . . . . . . . 10 (𝑥 = {𝐴, (𝐵𝐴)} → ((𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦) ↔ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)))
4843, 47anbi12d 747 . . . . . . . . 9 (𝑥 = {𝐴, (𝐵𝐴)} → ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) ↔ (𝜑 ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦))))
49 unieq 4444 . . . . . . . . . . 11 (𝑥 = {𝐴, (𝐵𝐴)} → 𝑥 = {𝐴, (𝐵𝐴)})
5049fveq2d 6195 . . . . . . . . . 10 (𝑥 = {𝐴, (𝐵𝐴)} → (𝑃 𝑥) = (𝑃 {𝐴, (𝐵𝐴)}))
51 esumeq1 30096 . . . . . . . . . 10 (𝑥 = {𝐴, (𝐵𝐴)} → Σ*𝑦𝑥(𝑃𝑦) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦))
5250, 51eqeq12d 2637 . . . . . . . . 9 (𝑥 = {𝐴, (𝐵𝐴)} → ((𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦) ↔ (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦)))
5348, 52imbi12d 334 . . . . . . . 8 (𝑥 = {𝐴, (𝐵𝐴)} → (((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦)) ↔ ((𝜑 ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)) → (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦))))
54 caraext.3 . . . . . . . 8 ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦))
5553, 54vtoclg 3266 . . . . . . 7 ({𝐴, (𝐵𝐴)} ∈ V → ((𝜑 ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)) → (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦)))
5642, 55ax-mp 5 . . . . . 6 ((𝜑 ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)) → (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦))
5756adantlr 751 . . . . 5 (((𝜑𝐴 ≠ (𝐵𝐴)) ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)) → (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦))
5841, 57mpdan 702 . . . 4 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦))
59 uniprg 4450 . . . . . . . 8 ((𝐴𝑅 ∧ (𝐵𝐴) ∈ 𝑅) → {𝐴, (𝐵𝐴)} = (𝐴 ∪ (𝐵𝐴)))
6019, 23, 59syl2anc 693 . . . . . . 7 (𝜑 {𝐴, (𝐵𝐴)} = (𝐴 ∪ (𝐵𝐴)))
61 pmeasmono.4 . . . . . . . 8 (𝜑𝐴𝐵)
62 undif 4049 . . . . . . . 8 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
6361, 62sylib 208 . . . . . . 7 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
6460, 63eqtrd 2656 . . . . . 6 (𝜑 {𝐴, (𝐵𝐴)} = 𝐵)
6564adantr 481 . . . . 5 ((𝜑𝐴 ≠ (𝐵𝐴)) → {𝐴, (𝐵𝐴)} = 𝐵)
6665fveq2d 6195 . . . 4 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃 {𝐴, (𝐵𝐴)}) = (𝑃𝐵))
67 simpr 477 . . . . . 6 (((𝜑𝐴 ≠ (𝐵𝐴)) ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴)
6867fveq2d 6195 . . . . 5 (((𝜑𝐴 ≠ (𝐵𝐴)) ∧ 𝑦 = 𝐴) → (𝑃𝑦) = (𝑃𝐴))
69 simpr 477 . . . . . 6 (((𝜑𝐴 ≠ (𝐵𝐴)) ∧ 𝑦 = (𝐵𝐴)) → 𝑦 = (𝐵𝐴))
7069fveq2d 6195 . . . . 5 (((𝜑𝐴 ≠ (𝐵𝐴)) ∧ 𝑦 = (𝐵𝐴)) → (𝑃𝑦) = (𝑃‘(𝐵𝐴)))
7168, 70, 20, 24, 21, 25, 35esumpr 30128 . . . 4 ((𝜑𝐴 ≠ (𝐵𝐴)) → Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦) = ((𝑃𝐴) +𝑒 (𝑃‘(𝐵𝐴))))
7258, 66, 713eqtr3d 2664 . . 3 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃𝐵) = ((𝑃𝐴) +𝑒 (𝑃‘(𝐵𝐴))))
7327, 72breqtrrd 4681 . 2 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃𝐴) ≤ (𝑃𝐵))
7416, 73pm2.61dane 2881 1 (𝜑 → (𝑃𝐴) ≤ (𝑃𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  {cpr 4179   cuni 4436  Disj wdisj 4620   class class class wbr 4653  wf 5884  cfv 5888  (class class class)co 6650  ωcom 7065  cdom 7953  0cc0 9936  +∞cpnf 10071  *cxr 10073  cle 10075   +𝑒 cxad 11944  [,]cicc 12178  Σ*cesum 30089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-ordt 16161  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-ps 17200  df-tsr 17201  df-plusf 17241  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-subrg 18778  df-abv 18817  df-lmod 18865  df-scaf 18866  df-sra 19172  df-rgmod 19173  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-tmd 21876  df-tgp 21877  df-tsms 21930  df-trg 21963  df-xms 22125  df-ms 22126  df-tms 22127  df-nm 22387  df-ngp 22388  df-nrg 22390  df-nlm 22391  df-ii 22680  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-esum 30090
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator