![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2690 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | notbid 308 | . . 3 ⊢ (𝐴 = 𝐵 → (¬ 𝑥 ∈ 𝐴 ↔ ¬ 𝑥 ∈ 𝐵)) |
3 | 2 | rabbidv 3189 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵}) |
4 | dfdif2 3583 | . 2 ⊢ (𝐶 ∖ 𝐴) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} | |
5 | dfdif2 3583 | . 2 ⊢ (𝐶 ∖ 𝐵) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵} | |
6 | 3, 4, 5 | 3eqtr4g 2681 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1483 ∈ wcel 1990 {crab 2916 ∖ cdif 3571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-ral 2917 df-rab 2921 df-dif 3577 |
This theorem is referenced by: difeq12 3723 difeq2i 3725 difeq2d 3728 symdifeq1 3846 ssdifim 3862 disjdif2 4047 ssdifeq0 4051 sorpsscmpl 6948 2oconcl 7583 oev 7594 sbthlem2 8071 sbth 8080 infdiffi 8555 fin1ai 9115 fin23lem7 9138 fin23lem11 9139 compsscnv 9193 isf34lem1 9194 compss 9198 isf34lem4 9199 fin1a2lem7 9228 pwfseqlem4a 9483 pwfseqlem4 9484 efgmval 18125 efgi 18132 frgpuptinv 18184 gsumcllem 18309 gsumzaddlem 18321 fctop 20808 cctop 20810 iscld 20831 clsval2 20854 opncldf1 20888 opncldf2 20889 opncldf3 20890 indiscld 20895 mretopd 20896 restcld 20976 lecldbas 21023 pnrmopn 21147 hauscmplem 21209 elpt 21375 elptr 21376 cfinfil 21697 csdfil 21698 ufilss 21709 filufint 21724 cfinufil 21732 ufinffr 21733 ufilen 21734 prdsxmslem2 22334 lebnumlem1 22760 bcth3 23128 ismbl 23294 ishpg 25651 frgrwopregasn 27180 frgrwopregbsn 27181 disjdifprg 29388 0elsiga 30177 prsiga 30194 sigaclci 30195 difelsiga 30196 unelldsys 30221 sigapildsyslem 30224 sigapildsys 30225 ldgenpisyslem1 30226 isros 30231 unelros 30234 difelros 30235 inelsros 30241 diffiunisros 30242 rossros 30243 elcarsg 30367 ballotlemfval 30551 ballotlemgval 30585 kur14lem1 31188 topdifinffinlem 33195 topdifinffin 33196 dssmapfv3d 38313 dssmapnvod 38314 clsk3nimkb 38338 ntrclsneine0lem 38362 ntrclsk2 38366 ntrclskb 38367 ntrclsk13 38369 ntrclsk4 38370 prsal 40538 saldifcl 40539 salexct 40552 salexct2 40557 salexct3 40560 salgencntex 40561 salgensscntex 40562 caragenel 40709 |
Copyright terms: Public domain | W3C validator |