Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssslt1 Structured version   Visualization version   GIF version

Theorem sssslt1 31906
Description: Relationship between surreal set less than and subset. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
sssslt1 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶 <<s 𝐵)

Proof of Theorem sssslt1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltex1 31901 . . . . 5 (𝐴 <<s 𝐵𝐴 ∈ V)
21adantr 481 . . . 4 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐴 ∈ V)
3 simpr 477 . . . 4 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶𝐴)
42, 3ssexd 4805 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶 ∈ V)
5 ssltex2 31902 . . . 4 (𝐴 <<s 𝐵𝐵 ∈ V)
65adantr 481 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐵 ∈ V)
74, 6jca 554 . 2 ((𝐴 <<s 𝐵𝐶𝐴) → (𝐶 ∈ V ∧ 𝐵 ∈ V))
8 ssltss1 31903 . . . . 5 (𝐴 <<s 𝐵𝐴 No )
98adantr 481 . . . 4 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐴 No )
103, 9sstrd 3613 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶 No )
11 ssltss2 31904 . . . 4 (𝐴 <<s 𝐵𝐵 No )
1211adantr 481 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐵 No )
13 ssltsep 31905 . . . 4 (𝐴 <<s 𝐵 → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
14 ssralv 3666 . . . 4 (𝐶𝐴 → (∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 → ∀𝑥𝐶𝑦𝐵 𝑥 <s 𝑦))
1513, 14mpan9 486 . . 3 ((𝐴 <<s 𝐵𝐶𝐴) → ∀𝑥𝐶𝑦𝐵 𝑥 <s 𝑦)
1610, 12, 153jca 1242 . 2 ((𝐴 <<s 𝐵𝐶𝐴) → (𝐶 No 𝐵 No ∧ ∀𝑥𝐶𝑦𝐵 𝑥 <s 𝑦))
17 brsslt 31900 . 2 (𝐶 <<s 𝐵 ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐶 No 𝐵 No ∧ ∀𝑥𝐶𝑦𝐵 𝑥 <s 𝑦)))
187, 16, 17sylanbrc 698 1 ((𝐴 <<s 𝐵𝐶𝐴) → 𝐶 <<s 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037  wcel 1990  wral 2912  Vcvv 3200  wss 3574   class class class wbr 4653   No csur 31793   <s cslt 31794   <<s csslt 31896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-sslt 31897
This theorem is referenced by:  scutun12  31917
  Copyright terms: Public domain W3C validator