Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scutun12 Structured version   Visualization version   GIF version

Theorem scutun12 31917
Description: Union law for surreal cuts. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
scutun12 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴𝐶) |s (𝐵𝐷)) = (𝐴 |s 𝐵))

Proof of Theorem scutun12
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . . . . . 7 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → 𝐴 <<s 𝐵)
2 scutcut 31912 . . . . . . 7 (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
31, 2syl 17 . . . . . 6 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
43simp2d 1074 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → 𝐴 <<s {(𝐴 |s 𝐵)})
5 simp2 1062 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → 𝐶 <<s {(𝐴 |s 𝐵)})
6 ssltun1 31915 . . . . 5 ((𝐴 <<s {(𝐴 |s 𝐵)} ∧ 𝐶 <<s {(𝐴 |s 𝐵)}) → (𝐴𝐶) <<s {(𝐴 |s 𝐵)})
74, 5, 6syl2anc 693 . . . 4 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝐴𝐶) <<s {(𝐴 |s 𝐵)})
83simp3d 1075 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → {(𝐴 |s 𝐵)} <<s 𝐵)
9 simp3 1063 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → {(𝐴 |s 𝐵)} <<s 𝐷)
10 ssltun2 31916 . . . . 5 (({(𝐴 |s 𝐵)} <<s 𝐵 ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → {(𝐴 |s 𝐵)} <<s (𝐵𝐷))
118, 9, 10syl2anc 693 . . . 4 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → {(𝐴 |s 𝐵)} <<s (𝐵𝐷))
12 ovex 6678 . . . . . 6 (𝐴 |s 𝐵) ∈ V
1312snnz 4309 . . . . 5 {(𝐴 |s 𝐵)} ≠ ∅
14 sslttr 31914 . . . . 5 (((𝐴𝐶) <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s (𝐵𝐷) ∧ {(𝐴 |s 𝐵)} ≠ ∅) → (𝐴𝐶) <<s (𝐵𝐷))
1513, 14mp3an3 1413 . . . 4 (((𝐴𝐶) <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s (𝐵𝐷)) → (𝐴𝐶) <<s (𝐵𝐷))
167, 11, 15syl2anc 693 . . 3 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝐴𝐶) <<s (𝐵𝐷))
17 scutval 31911 . . 3 ((𝐴𝐶) <<s (𝐵𝐷) → ((𝐴𝐶) |s (𝐵𝐷)) = (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})))
1816, 17syl 17 . 2 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴𝐶) |s (𝐵𝐷)) = (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})))
19 vex 3203 . . . . . . . . . 10 𝑥 ∈ V
2019elima 5471 . . . . . . . . 9 (𝑥 ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ ∃𝑧 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}𝑧 bday 𝑥)
21 sneq 4187 . . . . . . . . . . . 12 (𝑦 = 𝑧 → {𝑦} = {𝑧})
2221breq2d 4665 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝐴𝐶) <<s {𝑦} ↔ (𝐴𝐶) <<s {𝑧}))
2321breq1d 4663 . . . . . . . . . . 11 (𝑦 = 𝑧 → ({𝑦} <<s (𝐵𝐷) ↔ {𝑧} <<s (𝐵𝐷)))
2422, 23anbi12d 747 . . . . . . . . . 10 (𝑦 = 𝑧 → (((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷)) ↔ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))))
2524rexrab 3370 . . . . . . . . 9 (∃𝑧 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}𝑧 bday 𝑥 ↔ ∃𝑧 No (((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷)) ∧ 𝑧 bday 𝑥))
2620, 25bitri 264 . . . . . . . 8 (𝑥 ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ ∃𝑧 No (((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷)) ∧ 𝑧 bday 𝑥))
27 simplr 792 . . . . . . . . . . . . 13 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → 𝑧 No )
28 bdayfn 31889 . . . . . . . . . . . . . 14 bday Fn No
29 fnbrfvb 6236 . . . . . . . . . . . . . 14 (( bday Fn No 𝑧 No ) → (( bday 𝑧) = 𝑥𝑧 bday 𝑥))
3028, 29mpan 706 . . . . . . . . . . . . 13 (𝑧 No → (( bday 𝑧) = 𝑥𝑧 bday 𝑥))
3127, 30syl 17 . . . . . . . . . . . 12 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → (( bday 𝑧) = 𝑥𝑧 bday 𝑥))
32 simpll1 1100 . . . . . . . . . . . . . . 15 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → 𝐴 <<s 𝐵)
33 scutbday 31913 . . . . . . . . . . . . . . 15 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
3432, 33syl 17 . . . . . . . . . . . . . 14 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
35 simprl 794 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → (𝐴𝐶) <<s {𝑧})
36 ssun1 3776 . . . . . . . . . . . . . . . . . . . 20 𝐴 ⊆ (𝐴𝐶)
37 sssslt1 31906 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐶) <<s {𝑧} ∧ 𝐴 ⊆ (𝐴𝐶)) → 𝐴 <<s {𝑧})
3836, 37mpan2 707 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝐶) <<s {𝑧} → 𝐴 <<s {𝑧})
3935, 38syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → 𝐴 <<s {𝑧})
40 simprr 796 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → {𝑧} <<s (𝐵𝐷))
41 ssun1 3776 . . . . . . . . . . . . . . . . . . . 20 𝐵 ⊆ (𝐵𝐷)
42 sssslt2 31907 . . . . . . . . . . . . . . . . . . . 20 (({𝑧} <<s (𝐵𝐷) ∧ 𝐵 ⊆ (𝐵𝐷)) → {𝑧} <<s 𝐵)
4341, 42mpan2 707 . . . . . . . . . . . . . . . . . . 19 ({𝑧} <<s (𝐵𝐷) → {𝑧} <<s 𝐵)
4440, 43syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → {𝑧} <<s 𝐵)
4539, 44jca 554 . . . . . . . . . . . . . . . . 17 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → (𝐴 <<s {𝑧} ∧ {𝑧} <<s 𝐵))
4621breq2d 4665 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → (𝐴 <<s {𝑦} ↔ 𝐴 <<s {𝑧}))
4721breq1d 4663 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → ({𝑦} <<s 𝐵 ↔ {𝑧} <<s 𝐵))
4846, 47anbi12d 747 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s {𝑧} ∧ {𝑧} <<s 𝐵)))
4948elrab 3363 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ↔ (𝑧 No ∧ (𝐴 <<s {𝑧} ∧ {𝑧} <<s 𝐵)))
5027, 45, 49sylanbrc 698 . . . . . . . . . . . . . . . 16 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → 𝑧 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
51 ssrab2 3687 . . . . . . . . . . . . . . . . 17 {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No
52 fnfvima 6496 . . . . . . . . . . . . . . . . 17 (( bday Fn No ∧ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No 𝑧 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday 𝑧) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
5328, 51, 52mp3an12 1414 . . . . . . . . . . . . . . . 16 (𝑧 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} → ( bday 𝑧) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
5450, 53syl 17 . . . . . . . . . . . . . . 15 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → ( bday 𝑧) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
55 intss1 4492 . . . . . . . . . . . . . . 15 (( bday 𝑧) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑧))
5654, 55syl 17 . . . . . . . . . . . . . 14 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑧))
5734, 56eqsstrd 3639 . . . . . . . . . . . . 13 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑧))
58 sseq2 3627 . . . . . . . . . . . . . . 15 (( bday 𝑧) = 𝑥 → (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑧) ↔ ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
5958biimpd 219 . . . . . . . . . . . . . 14 (( bday 𝑧) = 𝑥 → (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑧) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6059com12 32 . . . . . . . . . . . . 13 (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑧) → (( bday 𝑧) = 𝑥 → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6157, 60syl 17 . . . . . . . . . . . 12 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → (( bday 𝑧) = 𝑥 → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6231, 61sylbird 250 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) ∧ ((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷))) → (𝑧 bday 𝑥 → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6362ex 450 . . . . . . . . . 10 (((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) → (((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷)) → (𝑧 bday 𝑥 → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥)))
6463impd 447 . . . . . . . . 9 (((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ 𝑧 No ) → ((((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷)) ∧ 𝑧 bday 𝑥) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6564rexlimdva 3031 . . . . . . . 8 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (∃𝑧 No (((𝐴𝐶) <<s {𝑧} ∧ {𝑧} <<s (𝐵𝐷)) ∧ 𝑧 bday 𝑥) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6626, 65syl5bi 232 . . . . . . 7 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝑥 ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥))
6766ralrimiv 2965 . . . . . 6 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ∀𝑥 ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥)
68 ssint 4493 . . . . . 6 (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ ∀𝑥 ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑥)
6967, 68sylibr 224 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
703simp1d 1073 . . . . . . . 8 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝐴 |s 𝐵) ∈ No )
717, 11jca 554 . . . . . . . 8 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴𝐶) <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s (𝐵𝐷)))
72 sneq 4187 . . . . . . . . . . 11 (𝑦 = (𝐴 |s 𝐵) → {𝑦} = {(𝐴 |s 𝐵)})
7372breq2d 4665 . . . . . . . . . 10 (𝑦 = (𝐴 |s 𝐵) → ((𝐴𝐶) <<s {𝑦} ↔ (𝐴𝐶) <<s {(𝐴 |s 𝐵)}))
7472breq1d 4663 . . . . . . . . . 10 (𝑦 = (𝐴 |s 𝐵) → ({𝑦} <<s (𝐵𝐷) ↔ {(𝐴 |s 𝐵)} <<s (𝐵𝐷)))
7573, 74anbi12d 747 . . . . . . . . 9 (𝑦 = (𝐴 |s 𝐵) → (((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷)) ↔ ((𝐴𝐶) <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s (𝐵𝐷))))
7675elrab 3363 . . . . . . . 8 ((𝐴 |s 𝐵) ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ↔ ((𝐴 |s 𝐵) ∈ No ∧ ((𝐴𝐶) <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s (𝐵𝐷))))
7770, 71, 76sylanbrc 698 . . . . . . 7 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝐴 |s 𝐵) ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})
78 ssrab2 3687 . . . . . . . 8 {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ⊆ No
79 fnfvima 6496 . . . . . . . 8 (( bday Fn No ∧ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ⊆ No ∧ (𝐴 |s 𝐵) ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
8028, 78, 79mp3an12 1414 . . . . . . 7 ((𝐴 |s 𝐵) ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
8177, 80syl 17 . . . . . 6 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
82 intss1 4492 . . . . . 6 (( bday ‘(𝐴 |s 𝐵)) ∈ ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) → ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ⊆ ( bday ‘(𝐴 |s 𝐵)))
8381, 82syl 17 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ⊆ ( bday ‘(𝐴 |s 𝐵)))
8469, 83eqssd 3620 . . . 4 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
85 conway 31910 . . . . . 6 ((𝐴𝐶) <<s (𝐵𝐷) → ∃!𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
8616, 85syl 17 . . . . 5 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ∃!𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}))
87 fveq2 6191 . . . . . . 7 (𝑥 = (𝐴 |s 𝐵) → ( bday 𝑥) = ( bday ‘(𝐴 |s 𝐵)))
8887eqeq1d 2624 . . . . . 6 (𝑥 = (𝐴 |s 𝐵) → (( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})))
8988riota2 6633 . . . . 5 (((𝐴 |s 𝐵) ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ∧ ∃!𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})) → (( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})) = (𝐴 |s 𝐵)))
9077, 86, 89syl2anc 693 . . . 4 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))}) ↔ (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})) = (𝐴 |s 𝐵)))
9184, 90mpbid 222 . . 3 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})) = (𝐴 |s 𝐵))
9291eqcomd 2628 . 2 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))} ( bday 𝑥) = ( bday “ {𝑦 No ∣ ((𝐴𝐶) <<s {𝑦} ∧ {𝑦} <<s (𝐵𝐷))})))
9318, 92eqtr4d 2659 1 ((𝐴 <<s 𝐵𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴𝐶) |s (𝐵𝐷)) = (𝐴 |s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  ∃!wreu 2914  {crab 2916  cun 3572  wss 3574  c0 3915  {csn 4177   cint 4475   class class class wbr 4653  cima 5117   Fn wfn 5883  cfv 5888  crio 6610  (class class class)co 6650   No csur 31793   bday cbday 31795   <<s csslt 31896   |s cscut 31898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797  df-bday 31798  df-sslt 31897  df-scut 31899
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator