MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssunsn Structured version   Visualization version   GIF version

Theorem ssunsn 4360
Description: Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
ssunsn ((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 = 𝐵𝐴 = (𝐵 ∪ {𝐶})))

Proof of Theorem ssunsn
StepHypRef Expression
1 ssunsn2 4359 . 2 ((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ ((𝐵𝐴𝐴𝐵) ∨ ((𝐵 ∪ {𝐶}) ⊆ 𝐴𝐴 ⊆ (𝐵 ∪ {𝐶}))))
2 ancom 466 . . . 4 ((𝐵𝐴𝐴𝐵) ↔ (𝐴𝐵𝐵𝐴))
3 eqss 3618 . . . 4 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
42, 3bitr4i 267 . . 3 ((𝐵𝐴𝐴𝐵) ↔ 𝐴 = 𝐵)
5 ancom 466 . . . 4 (((𝐵 ∪ {𝐶}) ⊆ 𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 ⊆ (𝐵 ∪ {𝐶}) ∧ (𝐵 ∪ {𝐶}) ⊆ 𝐴))
6 eqss 3618 . . . 4 (𝐴 = (𝐵 ∪ {𝐶}) ↔ (𝐴 ⊆ (𝐵 ∪ {𝐶}) ∧ (𝐵 ∪ {𝐶}) ⊆ 𝐴))
75, 6bitr4i 267 . . 3 (((𝐵 ∪ {𝐶}) ⊆ 𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ 𝐴 = (𝐵 ∪ {𝐶}))
84, 7orbi12i 543 . 2 (((𝐵𝐴𝐴𝐵) ∨ ((𝐵 ∪ {𝐶}) ⊆ 𝐴𝐴 ⊆ (𝐵 ∪ {𝐶}))) ↔ (𝐴 = 𝐵𝐴 = (𝐵 ∪ {𝐶})))
91, 8bitri 264 1 ((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 = 𝐵𝐴 = (𝐵 ∪ {𝐶})))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wo 383  wa 384   = wceq 1483  cun 3572  wss 3574  {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178
This theorem is referenced by:  ssunpr  4365
  Copyright terms: Public domain W3C validator