MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssunsn Structured version   Visualization version   Unicode version

Theorem ssunsn 4360
Description: Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
ssunsn  |-  ( ( B  C_  A  /\  A  C_  ( B  u.  { C } ) )  <-> 
( A  =  B  \/  A  =  ( B  u.  { C } ) ) )

Proof of Theorem ssunsn
StepHypRef Expression
1 ssunsn2 4359 . 2  |-  ( ( B  C_  A  /\  A  C_  ( B  u.  { C } ) )  <-> 
( ( B  C_  A  /\  A  C_  B
)  \/  ( ( B  u.  { C } )  C_  A  /\  A  C_  ( B  u.  { C }
) ) ) )
2 ancom 466 . . . 4  |-  ( ( B  C_  A  /\  A  C_  B )  <->  ( A  C_  B  /\  B  C_  A ) )
3 eqss 3618 . . . 4  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
42, 3bitr4i 267 . . 3  |-  ( ( B  C_  A  /\  A  C_  B )  <->  A  =  B )
5 ancom 466 . . . 4  |-  ( ( ( B  u.  { C } )  C_  A  /\  A  C_  ( B  u.  { C }
) )  <->  ( A  C_  ( B  u.  { C } )  /\  ( B  u.  { C } )  C_  A
) )
6 eqss 3618 . . . 4  |-  ( A  =  ( B  u.  { C } )  <->  ( A  C_  ( B  u.  { C } )  /\  ( B  u.  { C } )  C_  A
) )
75, 6bitr4i 267 . . 3  |-  ( ( ( B  u.  { C } )  C_  A  /\  A  C_  ( B  u.  { C }
) )  <->  A  =  ( B  u.  { C } ) )
84, 7orbi12i 543 . 2  |-  ( ( ( B  C_  A  /\  A  C_  B )  \/  ( ( B  u.  { C }
)  C_  A  /\  A  C_  ( B  u.  { C } ) ) )  <->  ( A  =  B  \/  A  =  ( B  u.  { C } ) ) )
91, 8bitri 264 1  |-  ( ( B  C_  A  /\  A  C_  ( B  u.  { C } ) )  <-> 
( A  =  B  \/  A  =  ( B  u.  { C } ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    u. cun 3572    C_ wss 3574   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178
This theorem is referenced by:  ssunpr  4365
  Copyright terms: Public domain W3C validator