MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsn Structured version   Visualization version   GIF version

Theorem eqsn 4361
Description: Two ways to express that a nonempty set equals a singleton. (Contributed by NM, 15-Dec-2007.) (Proof shortened by JJ, 23-Jul-2021.)
Assertion
Ref Expression
eqsn (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eqsn
StepHypRef Expression
1 df-ne 2795 . . 3 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
2 biorf 420 . . 3 𝐴 = ∅ → (𝐴 = {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})))
31, 2sylbi 207 . 2 (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})))
4 dfss3 3592 . . 3 (𝐴 ⊆ {𝐵} ↔ ∀𝑥𝐴 𝑥 ∈ {𝐵})
5 sssn 4358 . . 3 (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))
6 velsn 4193 . . . 4 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
76ralbii 2980 . . 3 (∀𝑥𝐴 𝑥 ∈ {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵)
84, 5, 73bitr3i 290 . 2 ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ↔ ∀𝑥𝐴 𝑥 = 𝐵)
93, 8syl6bb 276 1 (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383   = wceq 1483  wcel 1990  wne 2794  wral 2912  wss 3574  c0 3915  {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178
This theorem is referenced by:  issn  4363  zornn0g  9327  hashgt12el  13210  hashgt12el2  13211  hashge2el2dif  13262  lssne0  18951  qtopeu  21519  rngoueqz  33739  mapdm0OLD  39383  lmod0rng  41868
  Copyright terms: Public domain W3C validator