![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sucidALT | Structured version Visualization version GIF version |
Description: A set belongs to its successor. This proof was automatically derived from sucidALTVD 39106 using translatewithout_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sucidALT.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sucidALT | ⊢ 𝐴 ∈ suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucidALT.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | snid 4208 | . . 3 ⊢ 𝐴 ∈ {𝐴} |
3 | elun1 3780 | . . 3 ⊢ (𝐴 ∈ {𝐴} → 𝐴 ∈ ({𝐴} ∪ 𝐴)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ 𝐴 ∈ ({𝐴} ∪ 𝐴) |
5 | df-suc 5729 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
6 | 5 | equncomi 3759 | . 2 ⊢ suc 𝐴 = ({𝐴} ∪ 𝐴) |
7 | 4, 6 | eleqtrri 2700 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1990 Vcvv 3200 ∪ cun 3572 {csn 4177 suc csuc 5725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-in 3581 df-ss 3588 df-sn 4178 df-suc 5729 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |