Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sucidALT Structured version   Visualization version   Unicode version

Theorem sucidALT 39107
Description: A set belongs to its successor. This proof was automatically derived from sucidALTVD 39106 using translatewithout_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
sucidALT.1  |-  A  e. 
_V
Assertion
Ref Expression
sucidALT  |-  A  e. 
suc  A

Proof of Theorem sucidALT
StepHypRef Expression
1 sucidALT.1 . . . 4  |-  A  e. 
_V
21snid 4208 . . 3  |-  A  e. 
{ A }
3 elun1 3780 . . 3  |-  ( A  e.  { A }  ->  A  e.  ( { A }  u.  A
) )
42, 3ax-mp 5 . 2  |-  A  e.  ( { A }  u.  A )
5 df-suc 5729 . . 3  |-  suc  A  =  ( A  u.  { A } )
65equncomi 3759 . 2  |-  suc  A  =  ( { A }  u.  A )
74, 6eleqtrri 2700 1  |-  A  e. 
suc  A
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1990   _Vcvv 3200    u. cun 3572   {csn 4177   suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-in 3581  df-ss 3588  df-sn 4178  df-suc 5729
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator