MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supeq1 Structured version   Visualization version   GIF version

Theorem supeq1 8351
Description: Equality theorem for supremum. (Contributed by NM, 22-May-1999.)
Assertion
Ref Expression
supeq1 (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))

Proof of Theorem supeq1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3138 . . . . 5 (𝐵 = 𝐶 → (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦𝐶 ¬ 𝑥𝑅𝑦))
2 rexeq 3139 . . . . . . 7 (𝐵 = 𝐶 → (∃𝑧𝐵 𝑦𝑅𝑧 ↔ ∃𝑧𝐶 𝑦𝑅𝑧))
32imbi2d 330 . . . . . 6 (𝐵 = 𝐶 → ((𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧) ↔ (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
43ralbidv 2986 . . . . 5 (𝐵 = 𝐶 → (∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧) ↔ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
51, 4anbi12d 747 . . . 4 (𝐵 = 𝐶 → ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) ↔ (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧))))
65rabbidv 3189 . . 3 (𝐵 = 𝐶 → {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} = {𝑥𝐴 ∣ (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧))})
76unieqd 4446 . 2 (𝐵 = 𝐶 {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} = {𝑥𝐴 ∣ (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧))})
8 df-sup 8348 . 2 sup(𝐵, 𝐴, 𝑅) = {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))}
9 df-sup 8348 . 2 sup(𝐶, 𝐴, 𝑅) = {𝑥𝐴 ∣ (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧))}
107, 8, 93eqtr4g 2681 1 (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wral 2912  wrex 2913  {crab 2916   cuni 4436   class class class wbr 4653  supcsup 8346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-uni 4437  df-sup 8348
This theorem is referenced by:  supeq1d  8352  supeq1i  8353  infeq1  8382  bndth  22757  ioorval  23342  uniioombllem6  23356  mdegcl  23829  suplesup  39555  supminfxr  39694
  Copyright terms: Public domain W3C validator