| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl5eqner | Structured version Visualization version GIF version | ||
| Description: A chained equality inference for inequality. (Contributed by NM, 6-Jun-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| syl5eqner.1 | ⊢ 𝐵 = 𝐴 |
| syl5eqner.2 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| syl5eqner | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl5eqner.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
| 3 | syl5eqner.2 | . 2 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
| 4 | 2, 3 | eqnetrrd 2862 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1483 ≠ wne 2794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-ne 2795 |
| This theorem is referenced by: xpcoidgend 13714 fclsfnflim 21831 ptcmplem2 21857 vieta1lem1 24065 vieta1lem2 24066 signsvfpn 30662 signsvfnn 30663 finxpreclem2 33227 finxp1o 33229 cdleme3h 35522 cdleme7ga 35535 fourierdlem42 40366 |
| Copyright terms: Public domain | W3C validator |