MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsfnflim Structured version   Visualization version   GIF version

Theorem fclsfnflim 21831
Description: A filter clusters at a point iff a finer filter converges to it. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
fclsfnflim (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∃𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔))))
Distinct variable groups:   𝐴,𝑔   𝑔,𝐹   𝑔,𝐽   𝑔,𝑋

Proof of Theorem fclsfnflim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filsspw 21655 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
21adantr 481 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐹 ⊆ 𝒫 𝑋)
3 fclstop 21815 . . . . . . . . . 10 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top)
43adantl 482 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐽 ∈ Top)
5 eqid 2622 . . . . . . . . . 10 𝐽 = 𝐽
65neisspw 20911 . . . . . . . . 9 (𝐽 ∈ Top → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝐽)
74, 6syl 17 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝐽)
8 filunibas 21685 . . . . . . . . . 10 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
95fclsfil 21814 . . . . . . . . . . 11 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
10 filunibas 21685 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘ 𝐽) → 𝐹 = 𝐽)
119, 10syl 17 . . . . . . . . . 10 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 = 𝐽)
128, 11sylan9req 2677 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝑋 = 𝐽)
1312pweqd 4163 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝒫 𝑋 = 𝒫 𝐽)
147, 13sseqtr4d 3642 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝑋)
152, 14unssd 3789 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ 𝒫 𝑋)
16 ssun1 3776 . . . . . . . 8 𝐹 ⊆ (𝐹 ∪ ((nei‘𝐽)‘{𝐴}))
17 filn0 21666 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
18 ssn0 3976 . . . . . . . 8 ((𝐹 ⊆ (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ∧ 𝐹 ≠ ∅) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅)
1916, 17, 18sylancr 695 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅)
2019adantr 481 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅)
21 incom 3805 . . . . . . . . . . . 12 (𝑦𝑥) = (𝑥𝑦)
22 fclsneii 21821 . . . . . . . . . . . 12 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑥𝐹) → (𝑦𝑥) ≠ ∅)
2321, 22syl5eqner 2869 . . . . . . . . . . 11 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑥𝐹) → (𝑥𝑦) ≠ ∅)
24233com23 1271 . . . . . . . . . 10 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑥𝐹𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑥𝑦) ≠ ∅)
25243expb 1266 . . . . . . . . 9 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑥𝐹𝑦 ∈ ((nei‘𝐽)‘{𝐴}))) → (𝑥𝑦) ≠ ∅)
2625adantll 750 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) ∧ (𝑥𝐹𝑦 ∈ ((nei‘𝐽)‘{𝐴}))) → (𝑥𝑦) ≠ ∅)
2726ralrimivva 2971 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ∀𝑥𝐹𝑦 ∈ ((nei‘𝐽)‘{𝐴})(𝑥𝑦) ≠ ∅)
28 filfbas 21652 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2928adantr 481 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐹 ∈ (fBas‘𝑋))
30 istopon 20717 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝐽))
314, 12, 30sylanbrc 698 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐽 ∈ (TopOn‘𝑋))
325fclselbas 21820 . . . . . . . . . . . . 13 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴 𝐽)
3332adantl 482 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐴 𝐽)
3433, 12eleqtrrd 2704 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐴𝑋)
3534snssd 4340 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → {𝐴} ⊆ 𝑋)
36 snnzg 4308 . . . . . . . . . . 11 (𝐴 ∈ (𝐽 fClus 𝐹) → {𝐴} ≠ ∅)
3736adantl 482 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → {𝐴} ≠ ∅)
38 neifil 21684 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
3931, 35, 37, 38syl3anc 1326 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
40 filfbas 21652 . . . . . . . . 9 (((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋))
4139, 40syl 17 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋))
42 fbunfip 21673 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝑋) ∧ ((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋)) → (¬ ∅ ∈ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ↔ ∀𝑥𝐹𝑦 ∈ ((nei‘𝐽)‘{𝐴})(𝑥𝑦) ≠ ∅))
4329, 41, 42syl2anc 693 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (¬ ∅ ∈ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ↔ ∀𝑥𝐹𝑦 ∈ ((nei‘𝐽)‘{𝐴})(𝑥𝑦) ≠ ∅))
4427, 43mpbird 247 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ¬ ∅ ∈ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))
45 filtop 21659 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
46 fsubbas 21671 . . . . . . . 8 (𝑋𝐹 → ((fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))
4745, 46syl 17 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → ((fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))
4847adantr 481 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))
4915, 20, 44, 48mpbir3and 1245 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋))
50 fgcl 21682 . . . . 5 ((fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∈ (Fil‘𝑋))
5149, 50syl 17 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∈ (Fil‘𝑋))
52 fvex 6201 . . . . . . . . 9 ((nei‘𝐽)‘{𝐴}) ∈ V
53 unexg 6959 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ ((nei‘𝐽)‘{𝐴}) ∈ V) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ∈ V)
5452, 53mpan2 707 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ∈ V)
55 ssfii 8325 . . . . . . . 8 ((𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ∈ V → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))
5654, 55syl 17 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))
5756adantr 481 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐹 ∪ ((nei‘𝐽)‘{𝐴})) ⊆ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))
5857unssad 3790 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐹 ⊆ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))
59 ssfg 21676 . . . . . 6 ((fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ∈ (fBas‘𝑋) → (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))
6049, 59syl 17 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))) ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))
6158, 60sstrd 3613 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))
6257unssbd 3791 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ⊆ (fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))
6362, 60sstrd 3613 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ((nei‘𝐽)‘{𝐴}) ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))
64 elflim 21775 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))))
6531, 51, 64syl2anc 693 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))))
6634, 63, 65mpbir2and 957 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))
67 sseq2 3627 . . . . . 6 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) → (𝐹𝑔𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))
68 oveq2 6658 . . . . . . 7 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) → (𝐽 fLim 𝑔) = (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))
6968eleq2d 2687 . . . . . 6 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) → (𝐴 ∈ (𝐽 fLim 𝑔) ↔ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))))))
7067, 69anbi12d 747 . . . . 5 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) → ((𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)) ↔ (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))))
7170rspcev 3309 . . . 4 (((𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴})))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(𝐹 ∪ ((nei‘𝐽)‘{𝐴}))))))) → ∃𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))
7251, 61, 66, 71syl12anc 1324 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fClus 𝐹)) → ∃𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))
7372ex 450 . 2 (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝐽 fClus 𝐹) → ∃𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔))))
74 simprl 794 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝑔 ∈ (Fil‘𝑋))
75 simprrr 805 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐴 ∈ (𝐽 fLim 𝑔))
76 flimtopon 21774 . . . . . . 7 (𝐴 ∈ (𝐽 fLim 𝑔) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑔 ∈ (Fil‘𝑋)))
7775, 76syl 17 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑔 ∈ (Fil‘𝑋)))
7874, 77mpbird 247 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐽 ∈ (TopOn‘𝑋))
79 simpl 473 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐹 ∈ (Fil‘𝑋))
80 simprrl 804 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐹𝑔)
81 fclsss2 21827 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝑔) → (𝐽 fClus 𝑔) ⊆ (𝐽 fClus 𝐹))
8278, 79, 80, 81syl3anc 1326 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → (𝐽 fClus 𝑔) ⊆ (𝐽 fClus 𝐹))
83 flimfcls 21830 . . . . 5 (𝐽 fLim 𝑔) ⊆ (𝐽 fClus 𝑔)
8483, 75sseldi 3601 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐴 ∈ (𝐽 fClus 𝑔))
8582, 84sseldd 3604 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ (𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)))) → 𝐴 ∈ (𝐽 fClus 𝐹))
8685rexlimdvaa 3032 . 2 (𝐹 ∈ (Fil‘𝑋) → (∃𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔)) → 𝐴 ∈ (𝐽 fClus 𝐹)))
8773, 86impbid 202 1 (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∃𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fLim 𝑔))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cun 3572  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177   cuni 4436  cfv 5888  (class class class)co 6650  ficfi 8316  fBascfbas 19734  filGencfg 19735  Topctop 20698  TopOnctopon 20715  neicnei 20901  Filcfil 21649   fLim cflim 21738   fClus cfcls 21740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-fil 21650  df-flim 21743  df-fcls 21745
This theorem is referenced by:  uffclsflim  21835  cnpfcfi  21844
  Copyright terms: Public domain W3C validator