MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgextfve Structured version   Visualization version   GIF version

Theorem symgextfve 17839
Description: The function value of the extension of a permutation, fixing the additional element, for the additional element. (Contributed by AV, 6-Jan-2019.)
Hypotheses
Ref Expression
symgext.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgext.e 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
Assertion
Ref Expression
symgextfve (𝐾𝑁 → (𝑋 = 𝐾 → (𝐸𝑋) = 𝐾))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍   𝑥,𝑋
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem symgextfve
StepHypRef Expression
1 fveq2 6191 . . 3 (𝑋 = 𝐾 → (𝐸𝑋) = (𝐸𝐾))
2 iftrue 4092 . . . . 5 (𝑥 = 𝐾 → if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)) = 𝐾)
3 symgext.e . . . . 5 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
42, 3fvmptg 6280 . . . 4 ((𝐾𝑁𝐾𝑁) → (𝐸𝐾) = 𝐾)
54anidms 677 . . 3 (𝐾𝑁 → (𝐸𝐾) = 𝐾)
61, 5sylan9eqr 2678 . 2 ((𝐾𝑁𝑋 = 𝐾) → (𝐸𝑋) = 𝐾)
76ex 450 1 (𝐾𝑁 → (𝑋 = 𝐾 → (𝐸𝑋) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  cdif 3571  ifcif 4086  {csn 4177  cmpt 4729  cfv 5888  Basecbs 15857  SymGrpcsymg 17797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by:  symgextf1lem  17840  symgextfo  17842
  Copyright terms: Public domain W3C validator