| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgbtwnne | Structured version Visualization version GIF version | ||
| Description: Betweenness and inequality. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgbtwntriv2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgbtwntriv2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgbtwncomb.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgbtwnne.1 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
| tgbtwnne.2 | ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
| Ref | Expression |
|---|---|
| tgbtwnne | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tkgeom.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tkgeom.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
| 3 | tkgeom.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tkgeom.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐺 ∈ TarskiG) |
| 6 | tgbtwntriv2.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | 6 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 ∈ 𝑃) |
| 8 | tgbtwntriv2.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 9 | 8 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐵 ∈ 𝑃) |
| 10 | tgbtwnne.1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
| 11 | 10 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐵 ∈ (𝐴𝐼𝐶)) |
| 12 | simpr 477 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 = 𝐶) | |
| 13 | 12 | oveq2d 6666 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐴𝐼𝐴) = (𝐴𝐼𝐶)) |
| 14 | 11, 13 | eleqtrrd 2704 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐵 ∈ (𝐴𝐼𝐴)) |
| 15 | 1, 2, 3, 5, 7, 9, 14 | axtgbtwnid 25365 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 = 𝐵) |
| 16 | 15 | eqcomd 2628 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐴) |
| 17 | tgbtwnne.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 𝐴) | |
| 18 | 17 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐵 ≠ 𝐴) |
| 19 | 18 | neneqd 2799 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → ¬ 𝐵 = 𝐴) |
| 20 | 16, 19 | pm2.65da 600 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐶) |
| 21 | 20 | neqned 2801 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 distcds 15950 TarskiGcstrkg 25329 Itvcitv 25335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-trkgb 25348 df-trkg 25352 |
| This theorem is referenced by: mideulem2 25626 opphllem 25627 outpasch 25647 lnopp2hpgb 25655 lmieu 25676 dfcgra2 25721 |
| Copyright terms: Public domain | W3C validator |