MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnopp2hpgb Structured version   Visualization version   GIF version

Theorem lnopp2hpgb 25655
Description: Theorem 9.8 of [Schwabhauser] p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
ishpg.p 𝑃 = (Base‘𝐺)
ishpg.i 𝐼 = (Itv‘𝐺)
ishpg.l 𝐿 = (LineG‘𝐺)
ishpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
ishpg.g (𝜑𝐺 ∈ TarskiG)
ishpg.d (𝜑𝐷 ∈ ran 𝐿)
hpgbr.a (𝜑𝐴𝑃)
hpgbr.b (𝜑𝐵𝑃)
lnopp2hpgb.c (𝜑𝐶𝑃)
lnopp2hpgb.1 (𝜑𝐴𝑂𝐶)
Assertion
Ref Expression
lnopp2hpgb (𝜑 → (𝐵𝑂𝐶𝐴((hpG‘𝐺)‘𝐷)𝐵))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝐶,𝑎,𝑏,𝑡   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝐿,𝑎,𝑏,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)

Proof of Theorem lnopp2hpgb
Dummy variables 𝑑 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnopp2hpgb.c . . . . 5 (𝜑𝐶𝑃)
21adantr 481 . . . 4 ((𝜑𝐵𝑂𝐶) → 𝐶𝑃)
3 lnopp2hpgb.1 . . . . 5 (𝜑𝐴𝑂𝐶)
43adantr 481 . . . 4 ((𝜑𝐵𝑂𝐶) → 𝐴𝑂𝐶)
5 simpr 477 . . . 4 ((𝜑𝐵𝑂𝐶) → 𝐵𝑂𝐶)
6 breq2 4657 . . . . . 6 (𝑑 = 𝐶 → (𝐴𝑂𝑑𝐴𝑂𝐶))
7 breq2 4657 . . . . . 6 (𝑑 = 𝐶 → (𝐵𝑂𝑑𝐵𝑂𝐶))
86, 7anbi12d 747 . . . . 5 (𝑑 = 𝐶 → ((𝐴𝑂𝑑𝐵𝑂𝑑) ↔ (𝐴𝑂𝐶𝐵𝑂𝐶)))
98rspcev 3309 . . . 4 ((𝐶𝑃 ∧ (𝐴𝑂𝐶𝐵𝑂𝐶)) → ∃𝑑𝑃 (𝐴𝑂𝑑𝐵𝑂𝑑))
102, 4, 5, 9syl12anc 1324 . . 3 ((𝜑𝐵𝑂𝐶) → ∃𝑑𝑃 (𝐴𝑂𝑑𝐵𝑂𝑑))
11 ishpg.p . . . . 5 𝑃 = (Base‘𝐺)
12 ishpg.i . . . . 5 𝐼 = (Itv‘𝐺)
13 ishpg.l . . . . 5 𝐿 = (LineG‘𝐺)
14 ishpg.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
15 ishpg.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
16 ishpg.d . . . . 5 (𝜑𝐷 ∈ ran 𝐿)
17 hpgbr.a . . . . 5 (𝜑𝐴𝑃)
18 hpgbr.b . . . . 5 (𝜑𝐵𝑃)
1911, 12, 13, 14, 15, 16, 17, 18hpgbr 25652 . . . 4 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑑𝑃 (𝐴𝑂𝑑𝐵𝑂𝑑)))
2019adantr 481 . . 3 ((𝜑𝐵𝑂𝐶) → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑑𝑃 (𝐴𝑂𝑑𝐵𝑂𝑑)))
2110, 20mpbird 247 . 2 ((𝜑𝐵𝑂𝐶) → 𝐴((hpG‘𝐺)‘𝐷)𝐵)
22 eqid 2622 . . . . . . . 8 (dist‘𝐺) = (dist‘𝐺)
2316ad7antr 774 . . . . . . . . 9 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝐷 ∈ ran 𝐿)
2423ad3antrrr 766 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐷 ∈ ran 𝐿)
2515ad7antr 774 . . . . . . . . 9 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝐺 ∈ TarskiG)
2625ad3antrrr 766 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐺 ∈ TarskiG)
27 eqid 2622 . . . . . . . 8 (hlG‘𝐺) = (hlG‘𝐺)
2817ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → 𝐴𝑃)
2928ad4antr 768 . . . . . . . . 9 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝐴𝑃)
3029ad3antrrr 766 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐴𝑃)
3118ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → 𝐵𝑃)
3231ad4antr 768 . . . . . . . . 9 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝐵𝑃)
3332ad3antrrr 766 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐵𝑃)
341ad10antr 780 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐶𝑃)
353ad10antr 780 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐴𝑂𝐶)
36 simpr 477 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧𝐷)
37 simplr 792 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑦𝐷)
3811, 13, 12, 25, 23, 37tglnpt 25444 . . . . . . . . . . . . . . 15 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑦𝑃)
3938ad3antrrr 766 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦𝑃)
40 simp-5r 809 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦𝐷)
4111, 22, 12, 14, 13, 24, 26, 30, 34, 35oppne1 25633 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → ¬ 𝐴𝐷)
42 nelne2 2891 . . . . . . . . . . . . . . 15 ((𝑦𝐷 ∧ ¬ 𝐴𝐷) → 𝑦𝐴)
4340, 41, 42syl2anc 693 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦𝐴)
4411, 12, 13, 26, 39, 30, 43tgelrnln 25525 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝑦𝐿𝐴) ∈ ran 𝐿)
4511, 12, 13, 26, 39, 30, 43tglinerflx2 25529 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐴 ∈ (𝑦𝐿𝐴))
46 nelne1 2890 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (𝑦𝐿𝐴) ∧ ¬ 𝐴𝐷) → (𝑦𝐿𝐴) ≠ 𝐷)
4745, 41, 46syl2anc 693 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝑦𝐿𝐴) ≠ 𝐷)
4847necomd 2849 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐷 ≠ (𝑦𝐿𝐴))
49 simpllr 799 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧𝑃)
50 simplrr 801 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝑦𝐼𝐴))
5111, 12, 13, 26, 39, 30, 49, 43, 50btwnlng1 25514 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝑦𝐿𝐴))
5236, 51elind 3798 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝐷 ∩ (𝑦𝐿𝐴)))
5311, 12, 13, 26, 39, 30, 43tglinerflx1 25528 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦 ∈ (𝑦𝐿𝐴))
5440, 53elind 3798 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦 ∈ (𝐷 ∩ (𝑦𝐿𝐴)))
5511, 12, 13, 26, 24, 44, 48, 52, 54tglineineq 25538 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 = 𝑦)
5655, 43eqnetrd 2861 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧𝐴)
5756necomd 2849 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐴𝑧)
58 simp-4r 807 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑥𝐷)
5911, 13, 12, 25, 23, 58tglnpt 25444 . . . . . . . . . . . . . . 15 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑥𝑃)
6059ad3antrrr 766 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥𝑃)
61 simp-7r 813 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥𝐷)
62 simplr 792 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → 𝑑𝑃)
6362ad4antr 768 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑑𝑃)
6463ad3antrrr 766 . . . . . . . . . . . . . . . 16 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑑𝑃)
65 simprr 796 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → 𝐵𝑂𝑑)
6665ad7antr 774 . . . . . . . . . . . . . . . 16 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐵𝑂𝑑)
6711, 22, 12, 14, 13, 24, 26, 33, 64, 66oppne1 25633 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → ¬ 𝐵𝐷)
68 nelne2 2891 . . . . . . . . . . . . . . 15 ((𝑥𝐷 ∧ ¬ 𝐵𝐷) → 𝑥𝐵)
6961, 67, 68syl2anc 693 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥𝐵)
7011, 12, 13, 26, 60, 33, 69tgelrnln 25525 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝑥𝐿𝐵) ∈ ran 𝐿)
7111, 12, 13, 26, 60, 33, 69tglinerflx2 25529 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐵 ∈ (𝑥𝐿𝐵))
72 nelne1 2890 . . . . . . . . . . . . . . 15 ((𝐵 ∈ (𝑥𝐿𝐵) ∧ ¬ 𝐵𝐷) → (𝑥𝐿𝐵) ≠ 𝐷)
7371, 67, 72syl2anc 693 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝑥𝐿𝐵) ≠ 𝐷)
7473necomd 2849 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐷 ≠ (𝑥𝐿𝐵))
75 simplrl 800 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝑥𝐼𝐵))
7611, 12, 13, 26, 60, 33, 49, 69, 75btwnlng1 25514 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝑥𝐿𝐵))
7736, 76elind 3798 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝐷 ∩ (𝑥𝐿𝐵)))
7811, 12, 13, 26, 60, 33, 69tglinerflx1 25528 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥 ∈ (𝑥𝐿𝐵))
7961, 78elind 3798 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥 ∈ (𝐷 ∩ (𝑥𝐿𝐵)))
8011, 12, 13, 26, 24, 70, 74, 77, 79tglineineq 25538 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 = 𝑥)
8180, 69eqnetrd 2861 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧𝐵)
8281necomd 2849 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐵𝑧)
83 simprl 794 . . . . . . . . . . . . . . 15 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → 𝐴𝑂𝑑)
8483ad7antr 774 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐴𝑂𝑑)
8511, 22, 12, 14, 13, 24, 26, 30, 64, 84oppne2 25634 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → ¬ 𝑑𝐷)
86 nelne2 2891 . . . . . . . . . . . . 13 ((𝑧𝐷 ∧ ¬ 𝑑𝐷) → 𝑧𝑑)
8736, 85, 86syl2anc 693 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧𝑑)
8887necomd 2849 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑑𝑧)
89 simpllr 799 . . . . . . . . . . . . . 14 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑥 ∈ (𝐴𝐼𝑑))
9089ad3antrrr 766 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥 ∈ (𝐴𝐼𝑑))
9111, 22, 12, 26, 30, 60, 64, 90tgbtwncom 25383 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥 ∈ (𝑑𝐼𝐴))
9280, 91eqeltrd 2701 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝑑𝐼𝐴))
93 simpr 477 . . . . . . . . . . . . . 14 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑦 ∈ (𝐵𝐼𝑑))
9493ad3antrrr 766 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦 ∈ (𝐵𝐼𝑑))
9511, 22, 12, 26, 33, 39, 64, 94tgbtwncom 25383 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦 ∈ (𝑑𝐼𝐵))
9655, 95eqeltrd 2701 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝑑𝐼𝐵))
9711, 12, 26, 64, 49, 30, 33, 88, 92, 96tgbtwnconn2 25471 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝐴 ∈ (𝑧𝐼𝐵) ∨ 𝐵 ∈ (𝑧𝐼𝐴)))
9857, 82, 973jca 1242 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝐴𝑧𝐵𝑧 ∧ (𝐴 ∈ (𝑧𝐼𝐵) ∨ 𝐵 ∈ (𝑧𝐼𝐴))))
9911, 12, 27, 30, 33, 49, 26ishlg 25497 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝐴((hlG‘𝐺)‘𝑧)𝐵 ↔ (𝐴𝑧𝐵𝑧 ∧ (𝐴 ∈ (𝑧𝐼𝐵) ∨ 𝐵 ∈ (𝑧𝐼𝐴)))))
10098, 99mpbird 247 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐴((hlG‘𝐺)‘𝑧)𝐵)
10111, 22, 12, 14, 13, 24, 26, 27, 30, 33, 34, 35, 36, 100opphl 25646 . . . . . . 7 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐵𝑂𝐶)
10223ad3antrrr 766 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐷 ∈ ran 𝐿)
10325ad3antrrr 766 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐺 ∈ TarskiG)
104 simpllr 799 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧𝑃)
10532ad3antrrr 766 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐵𝑃)
1061ad10antr 780 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐶𝑃)
10729ad3antrrr 766 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐴𝑃)
1083ad10antr 780 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐴𝑂𝐶)
10937ad3antrrr 766 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑦𝐷)
11038ad3antrrr 766 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑦𝑃)
111 simplrr 801 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧 ∈ (𝑦𝐼𝐴))
112 simpr 477 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → ¬ 𝑧𝐷)
113 nelne2 2891 . . . . . . . . . . . . . 14 ((𝑦𝐷 ∧ ¬ 𝑧𝐷) → 𝑦𝑧)
114109, 112, 113syl2anc 693 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑦𝑧)
115114necomd 2849 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧𝑦)
11611, 22, 12, 103, 110, 104, 107, 111, 115tgbtwnne 25385 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑦𝐴)
11711, 12, 27, 110, 107, 104, 103, 107, 111, 116, 115btwnhl1 25507 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧((hlG‘𝐺)‘𝑦)𝐴)
11811, 12, 27, 104, 107, 110, 103, 117hlcomd 25499 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐴((hlG‘𝐺)‘𝑦)𝑧)
11911, 22, 12, 14, 13, 102, 103, 27, 107, 104, 106, 108, 109, 118opphl 25646 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧𝑂𝐶)
12058ad3antrrr 766 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑥𝐷)
12159ad3antrrr 766 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑥𝑃)
122 simplrl 800 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧 ∈ (𝑥𝐼𝐵))
123 nelne2 2891 . . . . . . . . . . . 12 ((𝑥𝐷 ∧ ¬ 𝑧𝐷) → 𝑥𝑧)
124120, 112, 123syl2anc 693 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑥𝑧)
125124necomd 2849 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧𝑥)
12611, 22, 12, 103, 121, 104, 105, 122, 125tgbtwnne 25385 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑥𝐵)
12711, 12, 27, 121, 105, 104, 103, 107, 122, 126, 125btwnhl1 25507 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧((hlG‘𝐺)‘𝑥)𝐵)
12811, 22, 12, 14, 13, 102, 103, 27, 104, 105, 106, 119, 120, 127opphl 25646 . . . . . . 7 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐵𝑂𝐶)
129101, 128pm2.61dan 832 . . . . . 6 ((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) → 𝐵𝑂𝐶)
13011, 22, 12, 25, 29, 32, 63, 59, 38, 89, 93axtgpasch 25366 . . . . . 6 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴)))
131129, 130r19.29a 3078 . . . . 5 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝐵𝑂𝐶)
13211, 22, 12, 14, 31, 62islnopp 25631 . . . . . . . . 9 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → (𝐵𝑂𝑑 ↔ ((¬ 𝐵𝐷 ∧ ¬ 𝑑𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝑑))))
13365, 132mpbid 222 . . . . . . . 8 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → ((¬ 𝐵𝐷 ∧ ¬ 𝑑𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝑑)))
134133simprd 479 . . . . . . 7 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝑑))
135 eleq1 2689 . . . . . . . 8 (𝑡 = 𝑦 → (𝑡 ∈ (𝐵𝐼𝑑) ↔ 𝑦 ∈ (𝐵𝐼𝑑)))
136135cbvrexv 3172 . . . . . . 7 (∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝑑) ↔ ∃𝑦𝐷 𝑦 ∈ (𝐵𝐼𝑑))
137134, 136sylib 208 . . . . . 6 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → ∃𝑦𝐷 𝑦 ∈ (𝐵𝐼𝑑))
138137ad2antrr 762 . . . . 5 ((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) → ∃𝑦𝐷 𝑦 ∈ (𝐵𝐼𝑑))
139131, 138r19.29a 3078 . . . 4 ((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) → 𝐵𝑂𝐶)
14011, 22, 12, 14, 28, 62islnopp 25631 . . . . . . 7 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → (𝐴𝑂𝑑 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝑑𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑑))))
14183, 140mpbid 222 . . . . . 6 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → ((¬ 𝐴𝐷 ∧ ¬ 𝑑𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑑)))
142141simprd 479 . . . . 5 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑑))
143 eleq1 2689 . . . . . 6 (𝑡 = 𝑥 → (𝑡 ∈ (𝐴𝐼𝑑) ↔ 𝑥 ∈ (𝐴𝐼𝑑)))
144143cbvrexv 3172 . . . . 5 (∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑑) ↔ ∃𝑥𝐷 𝑥 ∈ (𝐴𝐼𝑑))
145142, 144sylib 208 . . . 4 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → ∃𝑥𝐷 𝑥 ∈ (𝐴𝐼𝑑))
146139, 145r19.29a 3078 . . 3 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → 𝐵𝑂𝐶)
14719biimpa 501 . . 3 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → ∃𝑑𝑃 (𝐴𝑂𝑑𝐵𝑂𝑑))
148146, 147r19.29a 3078 . 2 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐵𝑂𝐶)
14921, 148impbida 877 1 (𝜑 → (𝐵𝑂𝐶𝐴((hpG‘𝐺)‘𝐷)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  cdif 3571   class class class wbr 4653  {copab 4712  ran crn 5115  cfv 5888  (class class class)co 6650  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  hlGchlg 25495  hpGchpg 25649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkgld 25351  df-trkg 25352  df-cgrg 25406  df-leg 25478  df-hlg 25496  df-mir 25548  df-rag 25589  df-perpg 25591  df-hpg 25650
This theorem is referenced by:  lnoppnhpg  25656  hpgtr  25660  colhp  25662  lnperpex  25695  trgcopyeulem  25697
  Copyright terms: Public domain W3C validator