Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trficl Structured version   Visualization version   GIF version

Theorem trficl 37961
Description: The class of all transitive relations has the finite intersection property. (Contributed by Richard Penner, 1-Jan-2020.) (Proof shortened by Richard Penner, 3-Jan-2020.)
Hypothesis
Ref Expression
trficl.a 𝐴 = {𝑧 ∣ (𝑧𝑧) ⊆ 𝑧}
Assertion
Ref Expression
trficl 𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝐴
Allowed substitution hints:   𝐴(𝑥,𝑧)

Proof of Theorem trficl
StepHypRef Expression
1 trficl.a . 2 𝐴 = {𝑧 ∣ (𝑧𝑧) ⊆ 𝑧}
2 vex 3203 . . 3 𝑥 ∈ V
32inex1 4799 . 2 (𝑥𝑦) ∈ V
4 id 22 . . . 4 (𝑧 = (𝑥𝑦) → 𝑧 = (𝑥𝑦))
54, 4coeq12d 5286 . . 3 (𝑧 = (𝑥𝑦) → (𝑧𝑧) = ((𝑥𝑦) ∘ (𝑥𝑦)))
65, 4sseq12d 3634 . 2 (𝑧 = (𝑥𝑦) → ((𝑧𝑧) ⊆ 𝑧 ↔ ((𝑥𝑦) ∘ (𝑥𝑦)) ⊆ (𝑥𝑦)))
7 id 22 . . . 4 (𝑧 = 𝑥𝑧 = 𝑥)
87, 7coeq12d 5286 . . 3 (𝑧 = 𝑥 → (𝑧𝑧) = (𝑥𝑥))
98, 7sseq12d 3634 . 2 (𝑧 = 𝑥 → ((𝑧𝑧) ⊆ 𝑧 ↔ (𝑥𝑥) ⊆ 𝑥))
10 id 22 . . . 4 (𝑧 = 𝑦𝑧 = 𝑦)
1110, 10coeq12d 5286 . . 3 (𝑧 = 𝑦 → (𝑧𝑧) = (𝑦𝑦))
1211, 10sseq12d 3634 . 2 (𝑧 = 𝑦 → ((𝑧𝑧) ⊆ 𝑧 ↔ (𝑦𝑦) ⊆ 𝑦))
13 trin2 5519 . 2 (((𝑥𝑥) ⊆ 𝑥 ∧ (𝑦𝑦) ⊆ 𝑦) → ((𝑥𝑦) ∘ (𝑥𝑦)) ⊆ (𝑥𝑦))
141, 3, 6, 9, 12, 13cllem0 37871 1 𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wcel 1990  {cab 2608  wral 2912  Vcvv 3200  cin 3573  wss 3574  ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-co 5123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator