Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trficl Structured version   Visualization version   Unicode version

Theorem trficl 37961
Description: The class of all transitive relations has the finite intersection property. (Contributed by Richard Penner, 1-Jan-2020.) (Proof shortened by Richard Penner, 3-Jan-2020.)
Hypothesis
Ref Expression
trficl.a  |-  A  =  { z  |  ( z  o.  z ) 
C_  z }
Assertion
Ref Expression
trficl  |-  A. x  e.  A  A. y  e.  A  ( x  i^i  y )  e.  A
Distinct variable groups:    x, y,
z    y, A
Allowed substitution hints:    A( x, z)

Proof of Theorem trficl
StepHypRef Expression
1 trficl.a . 2  |-  A  =  { z  |  ( z  o.  z ) 
C_  z }
2 vex 3203 . . 3  |-  x  e. 
_V
32inex1 4799 . 2  |-  ( x  i^i  y )  e. 
_V
4 id 22 . . . 4  |-  ( z  =  ( x  i^i  y )  ->  z  =  ( x  i^i  y ) )
54, 4coeq12d 5286 . . 3  |-  ( z  =  ( x  i^i  y )  ->  (
z  o.  z )  =  ( ( x  i^i  y )  o.  ( x  i^i  y
) ) )
65, 4sseq12d 3634 . 2  |-  ( z  =  ( x  i^i  y )  ->  (
( z  o.  z
)  C_  z  <->  ( (
x  i^i  y )  o.  ( x  i^i  y
) )  C_  (
x  i^i  y )
) )
7 id 22 . . . 4  |-  ( z  =  x  ->  z  =  x )
87, 7coeq12d 5286 . . 3  |-  ( z  =  x  ->  (
z  o.  z )  =  ( x  o.  x ) )
98, 7sseq12d 3634 . 2  |-  ( z  =  x  ->  (
( z  o.  z
)  C_  z  <->  ( x  o.  x )  C_  x
) )
10 id 22 . . . 4  |-  ( z  =  y  ->  z  =  y )
1110, 10coeq12d 5286 . . 3  |-  ( z  =  y  ->  (
z  o.  z )  =  ( y  o.  y ) )
1211, 10sseq12d 3634 . 2  |-  ( z  =  y  ->  (
( z  o.  z
)  C_  z  <->  ( y  o.  y )  C_  y
) )
13 trin2 5519 . 2  |-  ( ( ( x  o.  x
)  C_  x  /\  ( y  o.  y
)  C_  y )  ->  ( ( x  i^i  y )  o.  (
x  i^i  y )
)  C_  ( x  i^i  y ) )
141, 3, 6, 9, 12, 13cllem0 37871 1  |-  A. x  e.  A  A. y  e.  A  ( x  i^i  y )  e.  A
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574    o. ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-co 5123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator