![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trintssOLD | Structured version Visualization version GIF version |
Description: Obsolete version of trintss 4769 as of 30-Oct-2021. (Contributed by Scott Fenton, 3-Mar-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
trintssOLD | ⊢ ((𝐴 ≠ ∅ ∧ Tr 𝐴) → ∩ 𝐴 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3203 | . . . 4 ⊢ 𝑦 ∈ V | |
2 | 1 | elint2 4482 | . . 3 ⊢ (𝑦 ∈ ∩ 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) |
3 | r19.2z 4060 | . . . . 5 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
4 | 3 | ex 450 | . . . 4 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥)) |
5 | trel 4759 | . . . . . 6 ⊢ (Tr 𝐴 → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴)) | |
6 | 5 | expcomd 454 | . . . . 5 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴))) |
7 | 6 | rexlimdv 3030 | . . . 4 ⊢ (Tr 𝐴 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) |
8 | 4, 7 | sylan9 689 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ Tr 𝐴) → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) |
9 | 2, 8 | syl5bi 232 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ Tr 𝐴) → (𝑦 ∈ ∩ 𝐴 → 𝑦 ∈ 𝐴)) |
10 | 9 | ssrdv 3609 | 1 ⊢ ((𝐴 ≠ ∅ ∧ Tr 𝐴) → ∩ 𝐴 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 ∃wrex 2913 ⊆ wss 3574 ∅c0 3915 ∩ cint 4475 Tr wtr 4752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-uni 4437 df-int 4476 df-tr 4753 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |