MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trintssOLD Structured version   Visualization version   GIF version

Theorem trintssOLD 4770
Description: Obsolete version of trintss 4769 as of 30-Oct-2021. (Contributed by Scott Fenton, 3-Mar-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trintssOLD ((𝐴 ≠ ∅ ∧ Tr 𝐴) → 𝐴𝐴)

Proof of Theorem trintssOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . 4 𝑦 ∈ V
21elint2 4482 . . 3 (𝑦 𝐴 ↔ ∀𝑥𝐴 𝑦𝑥)
3 r19.2z 4060 . . . . 5 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝑦𝑥) → ∃𝑥𝐴 𝑦𝑥)
43ex 450 . . . 4 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝑦𝑥 → ∃𝑥𝐴 𝑦𝑥))
5 trel 4759 . . . . . 6 (Tr 𝐴 → ((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
65expcomd 454 . . . . 5 (Tr 𝐴 → (𝑥𝐴 → (𝑦𝑥𝑦𝐴)))
76rexlimdv 3030 . . . 4 (Tr 𝐴 → (∃𝑥𝐴 𝑦𝑥𝑦𝐴))
84, 7sylan9 689 . . 3 ((𝐴 ≠ ∅ ∧ Tr 𝐴) → (∀𝑥𝐴 𝑦𝑥𝑦𝐴))
92, 8syl5bi 232 . 2 ((𝐴 ≠ ∅ ∧ Tr 𝐴) → (𝑦 𝐴𝑦𝐴))
109ssrdv 3609 1 ((𝐴 ≠ ∅ ∧ Tr 𝐴) → 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990  wne 2794  wral 2912  wrex 2913  wss 3574  c0 3915   cint 4475  Tr wtr 4752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-uni 4437  df-int 4476  df-tr 4753
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator