MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trssOLD Structured version   Visualization version   GIF version

Theorem trssOLD 4762
Description: Obsolete proof of trss 4761 as of 26-Jul-2021. (Contributed by NM, 7-Aug-1994.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
trssOLD (Tr 𝐴 → (𝐵𝐴𝐵𝐴))

Proof of Theorem trssOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2689 . . . . 5 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
2 sseq1 3626 . . . . 5 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
31, 2imbi12d 334 . . . 4 (𝑥 = 𝐵 → ((𝑥𝐴𝑥𝐴) ↔ (𝐵𝐴𝐵𝐴)))
43imbi2d 330 . . 3 (𝑥 = 𝐵 → ((Tr 𝐴 → (𝑥𝐴𝑥𝐴)) ↔ (Tr 𝐴 → (𝐵𝐴𝐵𝐴))))
5 dftr3 4756 . . . 4 (Tr 𝐴 ↔ ∀𝑥𝐴 𝑥𝐴)
6 rsp 2929 . . . 4 (∀𝑥𝐴 𝑥𝐴 → (𝑥𝐴𝑥𝐴))
75, 6sylbi 207 . . 3 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
84, 7vtoclg 3266 . 2 (𝐵𝐴 → (Tr 𝐴 → (𝐵𝐴𝐵𝐴)))
98pm2.43b 55 1 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wral 2912  wss 3574  Tr wtr 4752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-in 3581  df-ss 3588  df-uni 4437  df-tr 4753
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator