![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trss | Structured version Visualization version GIF version |
Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) (Proof shortened by JJ, 26-Jul-2021.) |
Ref | Expression |
---|---|
trss | ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr3 4756 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) | |
2 | sseq1 3626 | . . 3 ⊢ (𝑥 = 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
3 | 2 | rspccv 3306 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
4 | 1, 3 | sylbi 207 | 1 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1990 ∀wral 2912 ⊆ wss 3574 Tr wtr 4752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 df-in 3581 df-ss 3588 df-uni 4437 df-tr 4753 |
This theorem is referenced by: trin 4763 triun 4766 trintss 4769 tz7.2 5098 ordelss 5739 ordelord 5745 tz7.7 5749 trsucss 5811 omsinds 7084 tc2 8618 tcel 8621 r1ord3g 8642 r1ord2 8644 r1pwss 8647 rankwflemb 8656 r1elwf 8659 r1elssi 8668 uniwf 8682 itunitc1 9242 wunelss 9530 tskr1om2 9590 tskuni 9605 tskurn 9611 gruelss 9616 dfon2lem6 31693 dfon2lem9 31696 setindtr 37591 dford3lem1 37593 ordelordALT 38747 trsspwALT 39045 trsspwALT2 39046 trsspwALT3 39047 pwtrVD 39059 ordelordALTVD 39103 |
Copyright terms: Public domain | W3C validator |