![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trsspwALT2 | Structured version Visualization version GIF version |
Description: Virtual deduction proof of trsspwALT 39045. This proof is the same as the proof of trsspwALT 39045 except each virtual deduction symbol is replaced by its non-virtual deduction symbol equivalent. A transitive class is a subset of its power class. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
trsspwALT2 | ⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3591 | . . 3 ⊢ (𝐴 ⊆ 𝒫 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) | |
2 | id 22 | . . . . . . 7 ⊢ (Tr 𝐴 → Tr 𝐴) | |
3 | idd 24 | . . . . . . 7 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴)) | |
4 | trss 4761 | . . . . . . 7 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
5 | 2, 3, 4 | sylsyld 61 | . . . . . 6 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) |
6 | vex 3203 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
7 | 6 | elpw 4164 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
8 | 5, 7 | syl6ibr 242 | . . . . 5 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) |
9 | 8 | idiALT 38683 | . . . 4 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) |
10 | 9 | alrimiv 1855 | . . 3 ⊢ (Tr 𝐴 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) |
11 | biimpr 210 | . . 3 ⊢ ((𝐴 ⊆ 𝒫 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) → (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴) → 𝐴 ⊆ 𝒫 𝐴)) | |
12 | 1, 10, 11 | mpsyl 68 | . 2 ⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) |
13 | 12 | idiALT 38683 | 1 ⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 ∈ wcel 1990 ⊆ wss 3574 𝒫 cpw 4158 Tr wtr 4752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 df-in 3581 df-ss 3588 df-pw 4160 df-uni 4437 df-tr 4753 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |