Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trsspwALT2 Structured version   Visualization version   GIF version

Theorem trsspwALT2 39046
Description: Virtual deduction proof of trsspwALT 39045. This proof is the same as the proof of trsspwALT 39045 except each virtual deduction symbol is replaced by its non-virtual deduction symbol equivalent. A transitive class is a subset of its power class. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trsspwALT2 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)

Proof of Theorem trsspwALT2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfss2 3591 . . 3 (𝐴 ⊆ 𝒫 𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 ∈ 𝒫 𝐴))
2 id 22 . . . . . . 7 (Tr 𝐴 → Tr 𝐴)
3 idd 24 . . . . . . 7 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
4 trss 4761 . . . . . . 7 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
52, 3, 4sylsyld 61 . . . . . 6 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
6 vex 3203 . . . . . . 7 𝑥 ∈ V
76elpw 4164 . . . . . 6 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
85, 7syl6ibr 242 . . . . 5 (Tr 𝐴 → (𝑥𝐴𝑥 ∈ 𝒫 𝐴))
98idiALT 38683 . . . 4 (Tr 𝐴 → (𝑥𝐴𝑥 ∈ 𝒫 𝐴))
109alrimiv 1855 . . 3 (Tr 𝐴 → ∀𝑥(𝑥𝐴𝑥 ∈ 𝒫 𝐴))
11 biimpr 210 . . 3 ((𝐴 ⊆ 𝒫 𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 ∈ 𝒫 𝐴)) → (∀𝑥(𝑥𝐴𝑥 ∈ 𝒫 𝐴) → 𝐴 ⊆ 𝒫 𝐴))
121, 10, 11mpsyl 68 . 2 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
1312idiALT 38683 1 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1481  wcel 1990  wss 3574  𝒫 cpw 4158  Tr wtr 4752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-uni 4437  df-tr 4753
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator