Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trsspwALT2 Structured version   Visualization version   Unicode version

Theorem trsspwALT2 39046
Description: Virtual deduction proof of trsspwALT 39045. This proof is the same as the proof of trsspwALT 39045 except each virtual deduction symbol is replaced by its non-virtual deduction symbol equivalent. A transitive class is a subset of its power class. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trsspwALT2  |-  ( Tr  A  ->  A  C_  ~P A )

Proof of Theorem trsspwALT2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dfss2 3591 . . 3  |-  ( A 
C_  ~P A  <->  A. x
( x  e.  A  ->  x  e.  ~P A
) )
2 id 22 . . . . . . 7  |-  ( Tr  A  ->  Tr  A
)
3 idd 24 . . . . . . 7  |-  ( Tr  A  ->  ( x  e.  A  ->  x  e.  A ) )
4 trss 4761 . . . . . . 7  |-  ( Tr  A  ->  ( x  e.  A  ->  x  C_  A ) )
52, 3, 4sylsyld 61 . . . . . 6  |-  ( Tr  A  ->  ( x  e.  A  ->  x  C_  A ) )
6 vex 3203 . . . . . . 7  |-  x  e. 
_V
76elpw 4164 . . . . . 6  |-  ( x  e.  ~P A  <->  x  C_  A
)
85, 7syl6ibr 242 . . . . 5  |-  ( Tr  A  ->  ( x  e.  A  ->  x  e. 
~P A ) )
98idiALT 38683 . . . 4  |-  ( Tr  A  ->  ( x  e.  A  ->  x  e. 
~P A ) )
109alrimiv 1855 . . 3  |-  ( Tr  A  ->  A. x
( x  e.  A  ->  x  e.  ~P A
) )
11 biimpr 210 . . 3  |-  ( ( A  C_  ~P A  <->  A. x ( x  e.  A  ->  x  e.  ~P A ) )  -> 
( A. x ( x  e.  A  ->  x  e.  ~P A
)  ->  A  C_  ~P A ) )
121, 10, 11mpsyl 68 . 2  |-  ( Tr  A  ->  A  C_  ~P A )
1312idiALT 38683 1  |-  ( Tr  A  ->  A  C_  ~P A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481    e. wcel 1990    C_ wss 3574   ~Pcpw 4158   Tr wtr 4752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-uni 4437  df-tr 4753
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator