![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz6.12f | Structured version Visualization version GIF version |
Description: Function value, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 30-Aug-1999.) |
Ref | Expression |
---|---|
tz6.12f.1 | ⊢ Ⅎ𝑦𝐹 |
Ref | Expression |
---|---|
tz6.12f | ⊢ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 4403 | . . . . 5 ⊢ (𝑧 = 𝑦 → 〈𝐴, 𝑧〉 = 〈𝐴, 𝑦〉) | |
2 | 1 | eleq1d 2686 | . . . 4 ⊢ (𝑧 = 𝑦 → (〈𝐴, 𝑧〉 ∈ 𝐹 ↔ 〈𝐴, 𝑦〉 ∈ 𝐹)) |
3 | tz6.12f.1 | . . . . . . 7 ⊢ Ⅎ𝑦𝐹 | |
4 | 3 | nfel2 2781 | . . . . . 6 ⊢ Ⅎ𝑦〈𝐴, 𝑧〉 ∈ 𝐹 |
5 | nfv 1843 | . . . . . 6 ⊢ Ⅎ𝑧〈𝐴, 𝑦〉 ∈ 𝐹 | |
6 | 4, 5, 2 | cbveu 2505 | . . . . 5 ⊢ (∃!𝑧〈𝐴, 𝑧〉 ∈ 𝐹 ↔ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝑧 = 𝑦 → (∃!𝑧〈𝐴, 𝑧〉 ∈ 𝐹 ↔ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹)) |
8 | 2, 7 | anbi12d 747 | . . 3 ⊢ (𝑧 = 𝑦 → ((〈𝐴, 𝑧〉 ∈ 𝐹 ∧ ∃!𝑧〈𝐴, 𝑧〉 ∈ 𝐹) ↔ (〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹))) |
9 | eqeq2 2633 | . . 3 ⊢ (𝑧 = 𝑦 → ((𝐹‘𝐴) = 𝑧 ↔ (𝐹‘𝐴) = 𝑦)) | |
10 | 8, 9 | imbi12d 334 | . 2 ⊢ (𝑧 = 𝑦 → (((〈𝐴, 𝑧〉 ∈ 𝐹 ∧ ∃!𝑧〈𝐴, 𝑧〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑧) ↔ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑦))) |
11 | tz6.12 6211 | . 2 ⊢ ((〈𝐴, 𝑧〉 ∈ 𝐹 ∧ ∃!𝑧〈𝐴, 𝑧〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑧) | |
12 | 10, 11 | chvarv 2263 | 1 ⊢ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∃!weu 2470 Ⅎwnfc 2751 〈cop 4183 ‘cfv 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |