| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz6.12c | Structured version Visualization version GIF version | ||
| Description: Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) |
| Ref | Expression |
|---|---|
| tz6.12c | ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex 2494 | . . . 4 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ∃𝑦 𝐴𝐹𝑦) | |
| 2 | nfeu1 2480 | . . . . . 6 ⊢ Ⅎ𝑦∃!𝑦 𝐴𝐹𝑦 | |
| 3 | nfv 1843 | . . . . . 6 ⊢ Ⅎ𝑦 𝐴𝐹(𝐹‘𝐴) | |
| 4 | 2, 3 | nfim 1825 | . . . . 5 ⊢ Ⅎ𝑦(∃!𝑦 𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴)) |
| 5 | tz6.12-1 6210 | . . . . . . . 8 ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) | |
| 6 | 5 | expcom 451 | . . . . . . 7 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 → (𝐹‘𝐴) = 𝑦)) |
| 7 | breq2 4657 | . . . . . . . 8 ⊢ ((𝐹‘𝐴) = 𝑦 → (𝐴𝐹(𝐹‘𝐴) ↔ 𝐴𝐹𝑦)) | |
| 8 | 7 | biimprd 238 | . . . . . . 7 ⊢ ((𝐹‘𝐴) = 𝑦 → (𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴))) |
| 9 | 6, 8 | syli 39 | . . . . . 6 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴))) |
| 10 | 9 | com12 32 | . . . . 5 ⊢ (𝐴𝐹𝑦 → (∃!𝑦 𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴))) |
| 11 | 4, 10 | exlimi 2086 | . . . 4 ⊢ (∃𝑦 𝐴𝐹𝑦 → (∃!𝑦 𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴))) |
| 12 | 1, 11 | mpcom 38 | . . 3 ⊢ (∃!𝑦 𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴)) |
| 13 | 12, 7 | syl5ibcom 235 | . 2 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 → 𝐴𝐹𝑦)) |
| 14 | 13, 6 | impbid 202 | 1 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∃wex 1704 ∃!weu 2470 class class class wbr 4653 ‘cfv 5888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 |
| This theorem is referenced by: tz6.12i 6214 fnbrfvb 6236 |
| Copyright terms: Public domain | W3C validator |