![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrspan1lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for uhgrspan1 26195. (Contributed by AV, 19-Nov-2020.) |
Ref | Expression |
---|---|
uhgrspan1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrspan1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
uhgrspan1.f | ⊢ 𝐹 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ (𝐼‘𝑖)} |
Ref | Expression |
---|---|
uhgrspan1lem1 | ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼 ↾ 𝐹) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrspan1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | fvex 6201 | . . . 4 ⊢ (Vtx‘𝐺) ∈ V | |
3 | 1, 2 | eqeltri 2697 | . . 3 ⊢ 𝑉 ∈ V |
4 | 3 | difexi 4809 | . 2 ⊢ (𝑉 ∖ {𝑁}) ∈ V |
5 | uhgrspan1.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
6 | fvex 6201 | . . . 4 ⊢ (iEdg‘𝐺) ∈ V | |
7 | 5, 6 | eqeltri 2697 | . . 3 ⊢ 𝐼 ∈ V |
8 | 7 | resex 5443 | . 2 ⊢ (𝐼 ↾ 𝐹) ∈ V |
9 | 4, 8 | pm3.2i 471 | 1 ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼 ↾ 𝐹) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∉ wnel 2897 {crab 2916 Vcvv 3200 ∖ cdif 3571 {csn 4177 dom cdm 5114 ↾ cres 5116 ‘cfv 5888 Vtxcvtx 25874 iEdgciedg 25875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-pr 4180 df-uni 4437 df-res 5126 df-iota 5851 df-fv 5896 |
This theorem is referenced by: uhgrspan1lem2 26193 uhgrspan1lem3 26194 |
Copyright terms: Public domain | W3C validator |