MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspan1lem1 Structured version   Visualization version   GIF version

Theorem uhgrspan1lem1 26192
Description: Lemma 1 for uhgrspan1 26195. (Contributed by AV, 19-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan1.v 𝑉 = (Vtx‘𝐺)
uhgrspan1.i 𝐼 = (iEdg‘𝐺)
uhgrspan1.f 𝐹 = {𝑖 ∈ dom 𝐼𝑁 ∉ (𝐼𝑖)}
Assertion
Ref Expression
uhgrspan1lem1 ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼𝐹) ∈ V)

Proof of Theorem uhgrspan1lem1
StepHypRef Expression
1 uhgrspan1.v . . . 4 𝑉 = (Vtx‘𝐺)
2 fvex 6201 . . . 4 (Vtx‘𝐺) ∈ V
31, 2eqeltri 2697 . . 3 𝑉 ∈ V
43difexi 4809 . 2 (𝑉 ∖ {𝑁}) ∈ V
5 uhgrspan1.i . . . 4 𝐼 = (iEdg‘𝐺)
6 fvex 6201 . . . 4 (iEdg‘𝐺) ∈ V
75, 6eqeltri 2697 . . 3 𝐼 ∈ V
87resex 5443 . 2 (𝐼𝐹) ∈ V
94, 8pm3.2i 471 1 ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼𝐹) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wcel 1990  wnel 2897  {crab 2916  Vcvv 3200  cdif 3571  {csn 4177  dom cdm 5114  cres 5116  cfv 5888  Vtxcvtx 25874  iEdgciedg 25875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-uni 4437  df-res 5126  df-iota 5851  df-fv 5896
This theorem is referenced by:  uhgrspan1lem2  26193  uhgrspan1lem3  26194
  Copyright terms: Public domain W3C validator