![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unimax | Structured version Visualization version GIF version |
Description: Any member of a class is the largest of those members that it includes. (Contributed by NM, 13-Aug-2002.) |
Ref | Expression |
---|---|
unimax | ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3624 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
2 | sseq1 3626 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) | |
3 | 2 | elrab3 3364 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ↔ 𝐴 ⊆ 𝐴)) |
4 | 1, 3 | mpbiri 248 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}) |
5 | sseq1 3626 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) | |
6 | 5 | elrab 3363 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ 𝐴)) |
7 | 6 | simprbi 480 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} → 𝑦 ⊆ 𝐴) |
8 | 7 | rgen 2922 | . 2 ⊢ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}𝑦 ⊆ 𝐴 |
9 | ssunieq 4472 | . . 3 ⊢ ((𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}𝑦 ⊆ 𝐴) → 𝐴 = ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}) | |
10 | 9 | eqcomd 2628 | . 2 ⊢ ((𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}𝑦 ⊆ 𝐴) → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} = 𝐴) |
11 | 4, 8, 10 | sylancl 694 | 1 ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 {crab 2916 ⊆ wss 3574 ∪ cuni 4436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-in 3581 df-ss 3588 df-uni 4437 |
This theorem is referenced by: lssuni 18940 chsupid 28271 shatomistici 29220 lssats 34299 lpssat 34300 lssatle 34302 lssat 34303 |
Copyright terms: Public domain | W3C validator |