Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssatle Structured version   Visualization version   GIF version

Theorem lssatle 34302
Description: The ordering of two subspaces is determined by the atoms under them. (chrelat3 29230 analog.) (Contributed by NM, 29-Oct-2014.)
Hypotheses
Ref Expression
lssatle.s 𝑆 = (LSubSp‘𝑊)
lssatle.a 𝐴 = (LSAtoms‘𝑊)
lssatle.w (𝜑𝑊 ∈ LMod)
lssatle.t (𝜑𝑇𝑆)
lssatle.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lssatle (𝜑 → (𝑇𝑈 ↔ ∀𝑝𝐴 (𝑝𝑇𝑝𝑈)))
Distinct variable groups:   𝐴,𝑝   𝑆,𝑝   𝑇,𝑝   𝑈,𝑝   𝑊,𝑝
Allowed substitution hint:   𝜑(𝑝)

Proof of Theorem lssatle
StepHypRef Expression
1 sstr 3611 . . . 4 ((𝑝𝑇𝑇𝑈) → 𝑝𝑈)
21expcom 451 . . 3 (𝑇𝑈 → (𝑝𝑇𝑝𝑈))
32ralrimivw 2967 . 2 (𝑇𝑈 → ∀𝑝𝐴 (𝑝𝑇𝑝𝑈))
4 ss2rab 3678 . . 3 ({𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈} ↔ ∀𝑝𝐴 (𝑝𝑇𝑝𝑈))
5 lssatle.w . . . . . . 7 (𝜑𝑊 ∈ LMod)
65adantr 481 . . . . . 6 ((𝜑 ∧ {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑊 ∈ LMod)
7 lssatle.s . . . . . . . . . 10 𝑆 = (LSubSp‘𝑊)
8 lssatle.a . . . . . . . . . 10 𝐴 = (LSAtoms‘𝑊)
97, 8lsatlss 34283 . . . . . . . . 9 (𝑊 ∈ LMod → 𝐴𝑆)
10 rabss2 3685 . . . . . . . . 9 (𝐴𝑆 → {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
11 uniss 4458 . . . . . . . . 9 ({𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈} → {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
125, 9, 10, 114syl 19 . . . . . . . 8 (𝜑 {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
13 lssatle.u . . . . . . . . . 10 (𝜑𝑈𝑆)
14 unimax 4473 . . . . . . . . . 10 (𝑈𝑆 {𝑝𝑆𝑝𝑈} = 𝑈)
1513, 14syl 17 . . . . . . . . 9 (𝜑 {𝑝𝑆𝑝𝑈} = 𝑈)
16 eqid 2622 . . . . . . . . . . 11 (Base‘𝑊) = (Base‘𝑊)
1716, 7lssss 18937 . . . . . . . . . 10 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
1813, 17syl 17 . . . . . . . . 9 (𝜑𝑈 ⊆ (Base‘𝑊))
1915, 18eqsstrd 3639 . . . . . . . 8 (𝜑 {𝑝𝑆𝑝𝑈} ⊆ (Base‘𝑊))
2012, 19sstrd 3613 . . . . . . 7 (𝜑 {𝑝𝐴𝑝𝑈} ⊆ (Base‘𝑊))
2120adantr 481 . . . . . 6 ((𝜑 ∧ {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝐴𝑝𝑈} ⊆ (Base‘𝑊))
22 uniss 4458 . . . . . . 7 ({𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈} → {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈})
2322adantl 482 . . . . . 6 ((𝜑 ∧ {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈})
24 eqid 2622 . . . . . . 7 (LSpan‘𝑊) = (LSpan‘𝑊)
2516, 24lspss 18984 . . . . . 6 ((𝑊 ∈ LMod ∧ {𝑝𝐴𝑝𝑈} ⊆ (Base‘𝑊) ∧ {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈}) → ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
266, 21, 23, 25syl3anc 1326 . . . . 5 ((𝜑 ∧ {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈}) → ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
2726ex 450 . . . 4 (𝜑 → ({𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈} → ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈})))
28 lssatle.t . . . . . 6 (𝜑𝑇𝑆)
297, 24, 8lssats 34299 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑆) → 𝑇 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}))
305, 28, 29syl2anc 693 . . . . 5 (𝜑𝑇 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}))
317, 24, 8lssats 34299 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
325, 13, 31syl2anc 693 . . . . 5 (𝜑𝑈 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
3330, 32sseq12d 3634 . . . 4 (𝜑 → (𝑇𝑈 ↔ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈})))
3427, 33sylibrd 249 . . 3 (𝜑 → ({𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈} → 𝑇𝑈))
354, 34syl5bir 233 . 2 (𝜑 → (∀𝑝𝐴 (𝑝𝑇𝑝𝑈) → 𝑇𝑈))
363, 35impbid2 216 1 (𝜑 → (𝑇𝑈 ↔ ∀𝑝𝐴 (𝑝𝑇𝑝𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  wss 3574   cuni 4436  cfv 5888  Basecbs 15857  LModclmod 18863  LSubSpclss 18932  LSpanclspn 18971  LSAtomsclsa 34261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lsatoms 34263
This theorem is referenced by:  mapdordlem2  36926
  Copyright terms: Public domain W3C validator