![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniop | Structured version Visualization version GIF version |
Description: The union of an ordered pair. Theorem 65 of [Suppes] p. 39. (Contributed by NM, 17-Aug-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opthw.1 | ⊢ 𝐴 ∈ V |
opthw.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
uniop | ⊢ ∪ 〈𝐴, 𝐵〉 = {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opthw.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | opthw.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | dfop 4401 | . . 3 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
4 | 3 | unieqi 4445 | . 2 ⊢ ∪ 〈𝐴, 𝐵〉 = ∪ {{𝐴}, {𝐴, 𝐵}} |
5 | snex 4908 | . . 3 ⊢ {𝐴} ∈ V | |
6 | prex 4909 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
7 | 5, 6 | unipr 4449 | . 2 ⊢ ∪ {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∪ {𝐴, 𝐵}) |
8 | snsspr1 4345 | . . 3 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
9 | ssequn1 3783 | . . 3 ⊢ ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵}) | |
10 | 8, 9 | mpbi 220 | . 2 ⊢ ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵} |
11 | 4, 7, 10 | 3eqtri 2648 | 1 ⊢ ∪ 〈𝐴, 𝐵〉 = {𝐴, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∪ cun 3572 ⊆ wss 3574 {csn 4177 {cpr 4179 〈cop 4183 ∪ cuni 4436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 |
This theorem is referenced by: uniopel 4978 elvvuni 5179 dmrnssfld 5384 dffv2 6271 rankxplim 8742 |
Copyright terms: Public domain | W3C validator |