MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankxplim Structured version   Visualization version   GIF version

Theorem rankxplim 8742
Description: The rank of a Cartesian product when the rank of the union of its arguments is a limit ordinal. Part of Exercise 4 of [Kunen] p. 107. See rankxpsuc 8745 for the successor case. (Contributed by NM, 19-Sep-2006.)
Hypotheses
Ref Expression
rankxplim.1 𝐴 ∈ V
rankxplim.2 𝐵 ∈ V
Assertion
Ref Expression
rankxplim ((Lim (rank‘(𝐴𝐵)) ∧ (𝐴 × 𝐵) ≠ ∅) → (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴𝐵)))

Proof of Theorem rankxplim
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwuni 4474 . . . . . . . . . 10 𝑥, 𝑦⟩ ⊆ 𝒫 𝑥, 𝑦
2 vex 3203 . . . . . . . . . . . 12 𝑥 ∈ V
3 vex 3203 . . . . . . . . . . . 12 𝑦 ∈ V
42, 3uniop 4977 . . . . . . . . . . 11 𝑥, 𝑦⟩ = {𝑥, 𝑦}
54pweqi 4162 . . . . . . . . . 10 𝒫 𝑥, 𝑦⟩ = 𝒫 {𝑥, 𝑦}
61, 5sseqtri 3637 . . . . . . . . 9 𝑥, 𝑦⟩ ⊆ 𝒫 {𝑥, 𝑦}
7 pwuni 4474 . . . . . . . . . . 11 {𝑥, 𝑦} ⊆ 𝒫 {𝑥, 𝑦}
82, 3unipr 4449 . . . . . . . . . . . 12 {𝑥, 𝑦} = (𝑥𝑦)
98pweqi 4162 . . . . . . . . . . 11 𝒫 {𝑥, 𝑦} = 𝒫 (𝑥𝑦)
107, 9sseqtri 3637 . . . . . . . . . 10 {𝑥, 𝑦} ⊆ 𝒫 (𝑥𝑦)
11 sspwb 4917 . . . . . . . . . 10 ({𝑥, 𝑦} ⊆ 𝒫 (𝑥𝑦) ↔ 𝒫 {𝑥, 𝑦} ⊆ 𝒫 𝒫 (𝑥𝑦))
1210, 11mpbi 220 . . . . . . . . 9 𝒫 {𝑥, 𝑦} ⊆ 𝒫 𝒫 (𝑥𝑦)
136, 12sstri 3612 . . . . . . . 8 𝑥, 𝑦⟩ ⊆ 𝒫 𝒫 (𝑥𝑦)
142, 3unex 6956 . . . . . . . . . . 11 (𝑥𝑦) ∈ V
1514pwex 4848 . . . . . . . . . 10 𝒫 (𝑥𝑦) ∈ V
1615pwex 4848 . . . . . . . . 9 𝒫 𝒫 (𝑥𝑦) ∈ V
1716rankss 8712 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ⊆ 𝒫 𝒫 (𝑥𝑦) → (rank‘⟨𝑥, 𝑦⟩) ⊆ (rank‘𝒫 𝒫 (𝑥𝑦)))
1813, 17ax-mp 5 . . . . . . 7 (rank‘⟨𝑥, 𝑦⟩) ⊆ (rank‘𝒫 𝒫 (𝑥𝑦))
19 rankxplim.1 . . . . . . . . . . 11 𝐴 ∈ V
2019rankel 8702 . . . . . . . . . 10 (𝑥𝐴 → (rank‘𝑥) ∈ (rank‘𝐴))
21 rankxplim.2 . . . . . . . . . . 11 𝐵 ∈ V
2221rankel 8702 . . . . . . . . . 10 (𝑦𝐵 → (rank‘𝑦) ∈ (rank‘𝐵))
232, 3, 19, 21rankelun 8735 . . . . . . . . . 10 (((rank‘𝑥) ∈ (rank‘𝐴) ∧ (rank‘𝑦) ∈ (rank‘𝐵)) → (rank‘(𝑥𝑦)) ∈ (rank‘(𝐴𝐵)))
2420, 22, 23syl2an 494 . . . . . . . . 9 ((𝑥𝐴𝑦𝐵) → (rank‘(𝑥𝑦)) ∈ (rank‘(𝐴𝐵)))
2524adantl 482 . . . . . . . 8 ((Lim (rank‘(𝐴𝐵)) ∧ (𝑥𝐴𝑦𝐵)) → (rank‘(𝑥𝑦)) ∈ (rank‘(𝐴𝐵)))
26 ranklim 8707 . . . . . . . . . 10 (Lim (rank‘(𝐴𝐵)) → ((rank‘(𝑥𝑦)) ∈ (rank‘(𝐴𝐵)) ↔ (rank‘𝒫 (𝑥𝑦)) ∈ (rank‘(𝐴𝐵))))
27 ranklim 8707 . . . . . . . . . 10 (Lim (rank‘(𝐴𝐵)) → ((rank‘𝒫 (𝑥𝑦)) ∈ (rank‘(𝐴𝐵)) ↔ (rank‘𝒫 𝒫 (𝑥𝑦)) ∈ (rank‘(𝐴𝐵))))
2826, 27bitrd 268 . . . . . . . . 9 (Lim (rank‘(𝐴𝐵)) → ((rank‘(𝑥𝑦)) ∈ (rank‘(𝐴𝐵)) ↔ (rank‘𝒫 𝒫 (𝑥𝑦)) ∈ (rank‘(𝐴𝐵))))
2928adantr 481 . . . . . . . 8 ((Lim (rank‘(𝐴𝐵)) ∧ (𝑥𝐴𝑦𝐵)) → ((rank‘(𝑥𝑦)) ∈ (rank‘(𝐴𝐵)) ↔ (rank‘𝒫 𝒫 (𝑥𝑦)) ∈ (rank‘(𝐴𝐵))))
3025, 29mpbid 222 . . . . . . 7 ((Lim (rank‘(𝐴𝐵)) ∧ (𝑥𝐴𝑦𝐵)) → (rank‘𝒫 𝒫 (𝑥𝑦)) ∈ (rank‘(𝐴𝐵)))
31 rankon 8658 . . . . . . . 8 (rank‘⟨𝑥, 𝑦⟩) ∈ On
32 rankon 8658 . . . . . . . 8 (rank‘(𝐴𝐵)) ∈ On
33 ontr2 5772 . . . . . . . 8 (((rank‘⟨𝑥, 𝑦⟩) ∈ On ∧ (rank‘(𝐴𝐵)) ∈ On) → (((rank‘⟨𝑥, 𝑦⟩) ⊆ (rank‘𝒫 𝒫 (𝑥𝑦)) ∧ (rank‘𝒫 𝒫 (𝑥𝑦)) ∈ (rank‘(𝐴𝐵))) → (rank‘⟨𝑥, 𝑦⟩) ∈ (rank‘(𝐴𝐵))))
3431, 32, 33mp2an 708 . . . . . . 7 (((rank‘⟨𝑥, 𝑦⟩) ⊆ (rank‘𝒫 𝒫 (𝑥𝑦)) ∧ (rank‘𝒫 𝒫 (𝑥𝑦)) ∈ (rank‘(𝐴𝐵))) → (rank‘⟨𝑥, 𝑦⟩) ∈ (rank‘(𝐴𝐵)))
3518, 30, 34sylancr 695 . . . . . 6 ((Lim (rank‘(𝐴𝐵)) ∧ (𝑥𝐴𝑦𝐵)) → (rank‘⟨𝑥, 𝑦⟩) ∈ (rank‘(𝐴𝐵)))
3631, 32onsucssi 7041 . . . . . 6 ((rank‘⟨𝑥, 𝑦⟩) ∈ (rank‘(𝐴𝐵)) ↔ suc (rank‘⟨𝑥, 𝑦⟩) ⊆ (rank‘(𝐴𝐵)))
3735, 36sylib 208 . . . . 5 ((Lim (rank‘(𝐴𝐵)) ∧ (𝑥𝐴𝑦𝐵)) → suc (rank‘⟨𝑥, 𝑦⟩) ⊆ (rank‘(𝐴𝐵)))
3837ralrimivva 2971 . . . 4 (Lim (rank‘(𝐴𝐵)) → ∀𝑥𝐴𝑦𝐵 suc (rank‘⟨𝑥, 𝑦⟩) ⊆ (rank‘(𝐴𝐵)))
39 fveq2 6191 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (rank‘𝑧) = (rank‘⟨𝑥, 𝑦⟩))
40 suceq 5790 . . . . . . . 8 ((rank‘𝑧) = (rank‘⟨𝑥, 𝑦⟩) → suc (rank‘𝑧) = suc (rank‘⟨𝑥, 𝑦⟩))
4139, 40syl 17 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → suc (rank‘𝑧) = suc (rank‘⟨𝑥, 𝑦⟩))
4241sseq1d 3632 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (suc (rank‘𝑧) ⊆ (rank‘(𝐴𝐵)) ↔ suc (rank‘⟨𝑥, 𝑦⟩) ⊆ (rank‘(𝐴𝐵))))
4342ralxp 5263 . . . . 5 (∀𝑧 ∈ (𝐴 × 𝐵)suc (rank‘𝑧) ⊆ (rank‘(𝐴𝐵)) ↔ ∀𝑥𝐴𝑦𝐵 suc (rank‘⟨𝑥, 𝑦⟩) ⊆ (rank‘(𝐴𝐵)))
4419, 21xpex 6962 . . . . . 6 (𝐴 × 𝐵) ∈ V
4544rankbnd 8731 . . . . 5 (∀𝑧 ∈ (𝐴 × 𝐵)suc (rank‘𝑧) ⊆ (rank‘(𝐴𝐵)) ↔ (rank‘(𝐴 × 𝐵)) ⊆ (rank‘(𝐴𝐵)))
4643, 45bitr3i 266 . . . 4 (∀𝑥𝐴𝑦𝐵 suc (rank‘⟨𝑥, 𝑦⟩) ⊆ (rank‘(𝐴𝐵)) ↔ (rank‘(𝐴 × 𝐵)) ⊆ (rank‘(𝐴𝐵)))
4738, 46sylib 208 . . 3 (Lim (rank‘(𝐴𝐵)) → (rank‘(𝐴 × 𝐵)) ⊆ (rank‘(𝐴𝐵)))
4847adantr 481 . 2 ((Lim (rank‘(𝐴𝐵)) ∧ (𝐴 × 𝐵) ≠ ∅) → (rank‘(𝐴 × 𝐵)) ⊆ (rank‘(𝐴𝐵)))
4919, 21rankxpl 8738 . . 3 ((𝐴 × 𝐵) ≠ ∅ → (rank‘(𝐴𝐵)) ⊆ (rank‘(𝐴 × 𝐵)))
5049adantl 482 . 2 ((Lim (rank‘(𝐴𝐵)) ∧ (𝐴 × 𝐵) ≠ ∅) → (rank‘(𝐴𝐵)) ⊆ (rank‘(𝐴 × 𝐵)))
5148, 50eqssd 3620 1 ((Lim (rank‘(𝐴𝐵)) ∧ (𝐴 × 𝐵) ≠ ∅) → (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  cun 3572  wss 3574  c0 3915  𝒫 cpw 4158  {cpr 4179  cop 4183   cuni 4436   × cxp 5112  Oncon0 5723  Lim wlim 5724  suc csuc 5725  cfv 5888  rankcrnk 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-r1 8627  df-rank 8628
This theorem is referenced by:  rankxplim3  8744
  Copyright terms: Public domain W3C validator