| Step | Hyp | Ref
| Expression |
| 1 | | pwuni 4474 |
. . . . . . . . . 10
⊢
〈𝑥, 𝑦〉 ⊆ 𝒫 ∪ 〈𝑥, 𝑦〉 |
| 2 | | vex 3203 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
| 3 | | vex 3203 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
| 4 | 2, 3 | uniop 4977 |
. . . . . . . . . . 11
⊢ ∪ 〈𝑥, 𝑦〉 = {𝑥, 𝑦} |
| 5 | 4 | pweqi 4162 |
. . . . . . . . . 10
⊢ 𝒫
∪ 〈𝑥, 𝑦〉 = 𝒫 {𝑥, 𝑦} |
| 6 | 1, 5 | sseqtri 3637 |
. . . . . . . . 9
⊢
〈𝑥, 𝑦〉 ⊆ 𝒫 {𝑥, 𝑦} |
| 7 | | pwuni 4474 |
. . . . . . . . . . 11
⊢ {𝑥, 𝑦} ⊆ 𝒫 ∪ {𝑥,
𝑦} |
| 8 | 2, 3 | unipr 4449 |
. . . . . . . . . . . 12
⊢ ∪ {𝑥,
𝑦} = (𝑥 ∪ 𝑦) |
| 9 | 8 | pweqi 4162 |
. . . . . . . . . . 11
⊢ 𝒫
∪ {𝑥, 𝑦} = 𝒫 (𝑥 ∪ 𝑦) |
| 10 | 7, 9 | sseqtri 3637 |
. . . . . . . . . 10
⊢ {𝑥, 𝑦} ⊆ 𝒫 (𝑥 ∪ 𝑦) |
| 11 | | sspwb 4917 |
. . . . . . . . . 10
⊢ ({𝑥, 𝑦} ⊆ 𝒫 (𝑥 ∪ 𝑦) ↔ 𝒫 {𝑥, 𝑦} ⊆ 𝒫 𝒫 (𝑥 ∪ 𝑦)) |
| 12 | 10, 11 | mpbi 220 |
. . . . . . . . 9
⊢ 𝒫
{𝑥, 𝑦} ⊆ 𝒫 𝒫 (𝑥 ∪ 𝑦) |
| 13 | 6, 12 | sstri 3612 |
. . . . . . . 8
⊢
〈𝑥, 𝑦〉 ⊆ 𝒫
𝒫 (𝑥 ∪ 𝑦) |
| 14 | 2, 3 | unex 6956 |
. . . . . . . . . . 11
⊢ (𝑥 ∪ 𝑦) ∈ V |
| 15 | 14 | pwex 4848 |
. . . . . . . . . 10
⊢ 𝒫
(𝑥 ∪ 𝑦) ∈ V |
| 16 | 15 | pwex 4848 |
. . . . . . . . 9
⊢ 𝒫
𝒫 (𝑥 ∪ 𝑦) ∈ V |
| 17 | 16 | rankss 8712 |
. . . . . . . 8
⊢
(〈𝑥, 𝑦〉 ⊆ 𝒫
𝒫 (𝑥 ∪ 𝑦) → (rank‘〈𝑥, 𝑦〉) ⊆ (rank‘𝒫
𝒫 (𝑥 ∪ 𝑦))) |
| 18 | 13, 17 | ax-mp 5 |
. . . . . . 7
⊢
(rank‘〈𝑥,
𝑦〉) ⊆
(rank‘𝒫 𝒫 (𝑥 ∪ 𝑦)) |
| 19 | | rankxplim.1 |
. . . . . . . . . . 11
⊢ 𝐴 ∈ V |
| 20 | 19 | rankel 8702 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → (rank‘𝑥) ∈ (rank‘𝐴)) |
| 21 | | rankxplim.2 |
. . . . . . . . . . 11
⊢ 𝐵 ∈ V |
| 22 | 21 | rankel 8702 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐵 → (rank‘𝑦) ∈ (rank‘𝐵)) |
| 23 | 2, 3, 19, 21 | rankelun 8735 |
. . . . . . . . . 10
⊢
(((rank‘𝑥)
∈ (rank‘𝐴) ∧
(rank‘𝑦) ∈
(rank‘𝐵)) →
(rank‘(𝑥 ∪ 𝑦)) ∈ (rank‘(𝐴 ∪ 𝐵))) |
| 24 | 20, 22, 23 | syl2an 494 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (rank‘(𝑥 ∪ 𝑦)) ∈ (rank‘(𝐴 ∪ 𝐵))) |
| 25 | 24 | adantl 482 |
. . . . . . . 8
⊢ ((Lim
(rank‘(𝐴 ∪ 𝐵)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (rank‘(𝑥 ∪ 𝑦)) ∈ (rank‘(𝐴 ∪ 𝐵))) |
| 26 | | ranklim 8707 |
. . . . . . . . . 10
⊢ (Lim
(rank‘(𝐴 ∪ 𝐵)) → ((rank‘(𝑥 ∪ 𝑦)) ∈ (rank‘(𝐴 ∪ 𝐵)) ↔ (rank‘𝒫 (𝑥 ∪ 𝑦)) ∈ (rank‘(𝐴 ∪ 𝐵)))) |
| 27 | | ranklim 8707 |
. . . . . . . . . 10
⊢ (Lim
(rank‘(𝐴 ∪ 𝐵)) → ((rank‘𝒫
(𝑥 ∪ 𝑦)) ∈ (rank‘(𝐴 ∪ 𝐵)) ↔ (rank‘𝒫 𝒫
(𝑥 ∪ 𝑦)) ∈ (rank‘(𝐴 ∪ 𝐵)))) |
| 28 | 26, 27 | bitrd 268 |
. . . . . . . . 9
⊢ (Lim
(rank‘(𝐴 ∪ 𝐵)) → ((rank‘(𝑥 ∪ 𝑦)) ∈ (rank‘(𝐴 ∪ 𝐵)) ↔ (rank‘𝒫 𝒫
(𝑥 ∪ 𝑦)) ∈ (rank‘(𝐴 ∪ 𝐵)))) |
| 29 | 28 | adantr 481 |
. . . . . . . 8
⊢ ((Lim
(rank‘(𝐴 ∪ 𝐵)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ((rank‘(𝑥 ∪ 𝑦)) ∈ (rank‘(𝐴 ∪ 𝐵)) ↔ (rank‘𝒫 𝒫
(𝑥 ∪ 𝑦)) ∈ (rank‘(𝐴 ∪ 𝐵)))) |
| 30 | 25, 29 | mpbid 222 |
. . . . . . 7
⊢ ((Lim
(rank‘(𝐴 ∪ 𝐵)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (rank‘𝒫 𝒫
(𝑥 ∪ 𝑦)) ∈ (rank‘(𝐴 ∪ 𝐵))) |
| 31 | | rankon 8658 |
. . . . . . . 8
⊢
(rank‘〈𝑥,
𝑦〉) ∈
On |
| 32 | | rankon 8658 |
. . . . . . . 8
⊢
(rank‘(𝐴 ∪
𝐵)) ∈
On |
| 33 | | ontr2 5772 |
. . . . . . . 8
⊢
(((rank‘〈𝑥, 𝑦〉) ∈ On ∧ (rank‘(𝐴 ∪ 𝐵)) ∈ On) →
(((rank‘〈𝑥,
𝑦〉) ⊆
(rank‘𝒫 𝒫 (𝑥 ∪ 𝑦)) ∧ (rank‘𝒫 𝒫
(𝑥 ∪ 𝑦)) ∈ (rank‘(𝐴 ∪ 𝐵))) → (rank‘〈𝑥, 𝑦〉) ∈ (rank‘(𝐴 ∪ 𝐵)))) |
| 34 | 31, 32, 33 | mp2an 708 |
. . . . . . 7
⊢
(((rank‘〈𝑥, 𝑦〉) ⊆ (rank‘𝒫
𝒫 (𝑥 ∪ 𝑦)) ∧ (rank‘𝒫
𝒫 (𝑥 ∪ 𝑦)) ∈ (rank‘(𝐴 ∪ 𝐵))) → (rank‘〈𝑥, 𝑦〉) ∈ (rank‘(𝐴 ∪ 𝐵))) |
| 35 | 18, 30, 34 | sylancr 695 |
. . . . . 6
⊢ ((Lim
(rank‘(𝐴 ∪ 𝐵)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (rank‘〈𝑥, 𝑦〉) ∈ (rank‘(𝐴 ∪ 𝐵))) |
| 36 | 31, 32 | onsucssi 7041 |
. . . . . 6
⊢
((rank‘〈𝑥, 𝑦〉) ∈ (rank‘(𝐴 ∪ 𝐵)) ↔ suc (rank‘〈𝑥, 𝑦〉) ⊆ (rank‘(𝐴 ∪ 𝐵))) |
| 37 | 35, 36 | sylib 208 |
. . . . 5
⊢ ((Lim
(rank‘(𝐴 ∪ 𝐵)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → suc (rank‘〈𝑥, 𝑦〉) ⊆ (rank‘(𝐴 ∪ 𝐵))) |
| 38 | 37 | ralrimivva 2971 |
. . . 4
⊢ (Lim
(rank‘(𝐴 ∪ 𝐵)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 suc (rank‘〈𝑥, 𝑦〉) ⊆ (rank‘(𝐴 ∪ 𝐵))) |
| 39 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (rank‘𝑧) = (rank‘〈𝑥, 𝑦〉)) |
| 40 | | suceq 5790 |
. . . . . . . 8
⊢
((rank‘𝑧) =
(rank‘〈𝑥, 𝑦〉) → suc
(rank‘𝑧) = suc
(rank‘〈𝑥, 𝑦〉)) |
| 41 | 39, 40 | syl 17 |
. . . . . . 7
⊢ (𝑧 = 〈𝑥, 𝑦〉 → suc (rank‘𝑧) = suc (rank‘〈𝑥, 𝑦〉)) |
| 42 | 41 | sseq1d 3632 |
. . . . . 6
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (suc (rank‘𝑧) ⊆ (rank‘(𝐴 ∪ 𝐵)) ↔ suc (rank‘〈𝑥, 𝑦〉) ⊆ (rank‘(𝐴 ∪ 𝐵)))) |
| 43 | 42 | ralxp 5263 |
. . . . 5
⊢
(∀𝑧 ∈
(𝐴 × 𝐵)suc (rank‘𝑧) ⊆ (rank‘(𝐴 ∪ 𝐵)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 suc (rank‘〈𝑥, 𝑦〉) ⊆ (rank‘(𝐴 ∪ 𝐵))) |
| 44 | 19, 21 | xpex 6962 |
. . . . . 6
⊢ (𝐴 × 𝐵) ∈ V |
| 45 | 44 | rankbnd 8731 |
. . . . 5
⊢
(∀𝑧 ∈
(𝐴 × 𝐵)suc (rank‘𝑧) ⊆ (rank‘(𝐴 ∪ 𝐵)) ↔ (rank‘(𝐴 × 𝐵)) ⊆ (rank‘(𝐴 ∪ 𝐵))) |
| 46 | 43, 45 | bitr3i 266 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 suc (rank‘〈𝑥, 𝑦〉) ⊆ (rank‘(𝐴 ∪ 𝐵)) ↔ (rank‘(𝐴 × 𝐵)) ⊆ (rank‘(𝐴 ∪ 𝐵))) |
| 47 | 38, 46 | sylib 208 |
. . 3
⊢ (Lim
(rank‘(𝐴 ∪ 𝐵)) → (rank‘(𝐴 × 𝐵)) ⊆ (rank‘(𝐴 ∪ 𝐵))) |
| 48 | 47 | adantr 481 |
. 2
⊢ ((Lim
(rank‘(𝐴 ∪ 𝐵)) ∧ (𝐴 × 𝐵) ≠ ∅) → (rank‘(𝐴 × 𝐵)) ⊆ (rank‘(𝐴 ∪ 𝐵))) |
| 49 | 19, 21 | rankxpl 8738 |
. . 3
⊢ ((𝐴 × 𝐵) ≠ ∅ → (rank‘(𝐴 ∪ 𝐵)) ⊆ (rank‘(𝐴 × 𝐵))) |
| 50 | 49 | adantl 482 |
. 2
⊢ ((Lim
(rank‘(𝐴 ∪ 𝐵)) ∧ (𝐴 × 𝐵) ≠ ∅) → (rank‘(𝐴 ∪ 𝐵)) ⊆ (rank‘(𝐴 × 𝐵))) |
| 51 | 48, 50 | eqssd 3620 |
1
⊢ ((Lim
(rank‘(𝐴 ∪ 𝐵)) ∧ (𝐴 × 𝐵) ≠ ∅) → (rank‘(𝐴 × 𝐵)) = (rank‘(𝐴 ∪ 𝐵))) |