MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrop Structured version   Visualization version   GIF version

Theorem upgrop 25989
Description: A pseudograph represented by an ordered pair. (Contributed by AV, 12-Dec-2021.)
Assertion
Ref Expression
upgrop (𝐺 ∈ UPGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph )

Proof of Theorem upgrop
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2622 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2upgrf 25981 . 2 (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑝) ≤ 2})
4 fvex 6201 . . . 4 (Vtx‘𝐺) ∈ V
5 fvex 6201 . . . 4 (iEdg‘𝐺) ∈ V
64, 5pm3.2i 471 . . 3 ((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V)
7 opex 4932 . . . . 5 ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ V
8 eqid 2622 . . . . . 6 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
9 eqid 2622 . . . . . 6 (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
108, 9isupgr 25979 . . . . 5 (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ V → (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph ↔ (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩):dom (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)⟶{𝑝 ∈ (𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) ∖ {∅}) ∣ (#‘𝑝) ≤ 2}))
117, 10mp1i 13 . . . 4 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph ↔ (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩):dom (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)⟶{𝑝 ∈ (𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) ∖ {∅}) ∣ (#‘𝑝) ≤ 2}))
12 opiedgfv 25887 . . . . 5 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (iEdg‘𝐺))
1312dmeqd 5326 . . . . 5 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → dom (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = dom (iEdg‘𝐺))
14 opvtxfv 25884 . . . . . . . 8 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (Vtx‘𝐺))
1514pweqd 4163 . . . . . . 7 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → 𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = 𝒫 (Vtx‘𝐺))
1615difeq1d 3727 . . . . . 6 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) ∖ {∅}) = (𝒫 (Vtx‘𝐺) ∖ {∅}))
1716rabeqdv 3194 . . . . 5 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → {𝑝 ∈ (𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) ∖ {∅}) ∣ (#‘𝑝) ≤ 2} = {𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑝) ≤ 2})
1812, 13, 17feq123d 6034 . . . 4 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → ((iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩):dom (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)⟶{𝑝 ∈ (𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) ∖ {∅}) ∣ (#‘𝑝) ≤ 2} ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑝) ≤ 2}))
1911, 18bitrd 268 . . 3 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑝) ≤ 2}))
206, 19mp1i 13 . 2 (𝐺 ∈ UPGraph → (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑝) ≤ 2}))
213, 20mpbird 247 1 (𝐺 ∈ UPGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1990  {crab 2916  Vcvv 3200  cdif 3571  c0 3915  𝒫 cpw 4158  {csn 4177  cop 4183   class class class wbr 4653  dom cdm 5114  wf 5884  cfv 5888  cle 10075  2c2 11070  #chash 13117  Vtxcvtx 25874  iEdgciedg 25875   UPGraph cupgr 25975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-1st 7168  df-2nd 7169  df-vtx 25876  df-iedg 25877  df-upgr 25977
This theorem is referenced by:  finsumvtxdg2size  26446
  Copyright terms: Public domain W3C validator