![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgrres1lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for upgrres1 26205. (Contributed by AV, 7-Nov-2020.) |
Ref | Expression |
---|---|
upgrres1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgrres1.e | ⊢ 𝐸 = (Edg‘𝐺) |
upgrres1.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
Ref | Expression |
---|---|
upgrres1lem1 | ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgrres1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | fvex 6201 | . . . 4 ⊢ (Vtx‘𝐺) ∈ V | |
3 | 1, 2 | eqeltri 2697 | . . 3 ⊢ 𝑉 ∈ V |
4 | 3 | difexi 4809 | . 2 ⊢ (𝑉 ∖ {𝑁}) ∈ V |
5 | upgrres1.f | . . . 4 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
6 | upgrres1.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
7 | fvex 6201 | . . . . 5 ⊢ (Edg‘𝐺) ∈ V | |
8 | 6, 7 | eqeltri 2697 | . . . 4 ⊢ 𝐸 ∈ V |
9 | 5, 8 | rabex2 4815 | . . 3 ⊢ 𝐹 ∈ V |
10 | resiexg 7102 | . . 3 ⊢ (𝐹 ∈ V → ( I ↾ 𝐹) ∈ V) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ ( I ↾ 𝐹) ∈ V |
12 | 4, 11 | pm3.2i 471 | 1 ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∉ wnel 2897 {crab 2916 Vcvv 3200 ∖ cdif 3571 {csn 4177 I cid 5023 ↾ cres 5116 ‘cfv 5888 Vtxcvtx 25874 Edgcedg 25939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-res 5126 df-iota 5851 df-fv 5896 |
This theorem is referenced by: upgrres1lem2 26203 upgrres1lem3 26204 |
Copyright terms: Public domain | W3C validator |