MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrres1lem1 Structured version   Visualization version   GIF version

Theorem upgrres1lem1 26201
Description: Lemma 1 for upgrres1 26205. (Contributed by AV, 7-Nov-2020.)
Hypotheses
Ref Expression
upgrres1.v 𝑉 = (Vtx‘𝐺)
upgrres1.e 𝐸 = (Edg‘𝐺)
upgrres1.f 𝐹 = {𝑒𝐸𝑁𝑒}
Assertion
Ref Expression
upgrres1lem1 ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V)
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hint:   𝐹(𝑒)

Proof of Theorem upgrres1lem1
StepHypRef Expression
1 upgrres1.v . . . 4 𝑉 = (Vtx‘𝐺)
2 fvex 6201 . . . 4 (Vtx‘𝐺) ∈ V
31, 2eqeltri 2697 . . 3 𝑉 ∈ V
43difexi 4809 . 2 (𝑉 ∖ {𝑁}) ∈ V
5 upgrres1.f . . . 4 𝐹 = {𝑒𝐸𝑁𝑒}
6 upgrres1.e . . . . 5 𝐸 = (Edg‘𝐺)
7 fvex 6201 . . . . 5 (Edg‘𝐺) ∈ V
86, 7eqeltri 2697 . . . 4 𝐸 ∈ V
95, 8rabex2 4815 . . 3 𝐹 ∈ V
10 resiexg 7102 . . 3 (𝐹 ∈ V → ( I ↾ 𝐹) ∈ V)
119, 10ax-mp 5 . 2 ( I ↾ 𝐹) ∈ V
124, 11pm3.2i 471 1 ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wcel 1990  wnel 2897  {crab 2916  Vcvv 3200  cdif 3571  {csn 4177   I cid 5023  cres 5116  cfv 5888  Vtxcvtx 25874  Edgcedg 25939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-res 5126  df-iota 5851  df-fv 5896
This theorem is referenced by:  upgrres1lem2  26203  upgrres1lem3  26204
  Copyright terms: Public domain W3C validator