| Step | Hyp | Ref
| Expression |
| 1 | | f1oi 6174 |
. . . . 5
⊢ ( I
↾ 𝐹):𝐹–1-1-onto→𝐹 |
| 2 | | f1of 6137 |
. . . . 5
⊢ (( I
↾ 𝐹):𝐹–1-1-onto→𝐹 → ( I ↾ 𝐹):𝐹⟶𝐹) |
| 3 | 1, 2 | mp1i 13 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹):𝐹⟶𝐹) |
| 4 | 3 | ffdmd 6063 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐹) |
| 5 | | upgrres1.f |
. . . . 5
⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
| 6 | | simpr 477 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝐸) |
| 7 | 6 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ 𝐸) |
| 8 | | upgrres1.e |
. . . . . . . . . . . . 13
⊢ 𝐸 = (Edg‘𝐺) |
| 9 | 8 | eleq2i 2693 |
. . . . . . . . . . . 12
⊢ (𝑒 ∈ 𝐸 ↔ 𝑒 ∈ (Edg‘𝐺)) |
| 10 | | edgupgr 26029 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅ ∧ (#‘𝑒) ≤ 2)) |
| 11 | | elpwi 4168 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 ∈ 𝒫
(Vtx‘𝐺) → 𝑒 ⊆ (Vtx‘𝐺)) |
| 12 | | upgrres1.v |
. . . . . . . . . . . . . . 15
⊢ 𝑉 = (Vtx‘𝐺) |
| 13 | 11, 12 | syl6sseqr 3652 |
. . . . . . . . . . . . . 14
⊢ (𝑒 ∈ 𝒫
(Vtx‘𝐺) → 𝑒 ⊆ 𝑉) |
| 14 | 13 | 3ad2ant1 1082 |
. . . . . . . . . . . . 13
⊢ ((𝑒 ∈ 𝒫
(Vtx‘𝐺) ∧ 𝑒 ≠ ∅ ∧
(#‘𝑒) ≤ 2) →
𝑒 ⊆ 𝑉) |
| 15 | 10, 14 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ⊆ 𝑉) |
| 16 | 9, 15 | sylan2b 492 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ 𝐸) → 𝑒 ⊆ 𝑉) |
| 17 | 16 | ad4ant13 1292 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ⊆ 𝑉) |
| 18 | | simpr 477 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑁 ∉ 𝑒) |
| 19 | | elpwdifsn 4319 |
. . . . . . . . . 10
⊢ ((𝑒 ∈ 𝐸 ∧ 𝑒 ⊆ 𝑉 ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})) |
| 20 | 7, 17, 18, 19 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})) |
| 21 | | simpl 473 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → 𝐺 ∈ UPGraph ) |
| 22 | 9 | biimpi 206 |
. . . . . . . . . . . 12
⊢ (𝑒 ∈ 𝐸 → 𝑒 ∈ (Edg‘𝐺)) |
| 23 | 10 | simp2d 1074 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ≠ ∅) |
| 24 | 21, 22, 23 | syl2an 494 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → 𝑒 ≠ ∅) |
| 25 | 24 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ≠ ∅) |
| 26 | | nelsn 4212 |
. . . . . . . . . 10
⊢ (𝑒 ≠ ∅ → ¬ 𝑒 ∈
{∅}) |
| 27 | 25, 26 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → ¬ 𝑒 ∈ {∅}) |
| 28 | 20, 27 | eldifd 3585 |
. . . . . . . 8
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) ∧ 𝑁 ∉ 𝑒) → 𝑒 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅})) |
| 29 | 28 | ex 450 |
. . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → (𝑁 ∉ 𝑒 → 𝑒 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}))) |
| 30 | 29 | ralrimiva 2966 |
. . . . . 6
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → ∀𝑒 ∈ 𝐸 (𝑁 ∉ 𝑒 → 𝑒 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}))) |
| 31 | | rabss 3679 |
. . . . . 6
⊢ ({𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⊆ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ↔ ∀𝑒 ∈ 𝐸 (𝑁 ∉ 𝑒 → 𝑒 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}))) |
| 32 | 30, 31 | sylibr 224 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ⊆ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅})) |
| 33 | 5, 32 | syl5eqss 3649 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 ⊆ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅})) |
| 34 | | elrabi 3359 |
. . . . . . 7
⊢ (𝑝 ∈ {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} → 𝑝 ∈ 𝐸) |
| 35 | | edgval 25941 |
. . . . . . . . . . . 12
⊢
(Edg‘𝐺) = ran
(iEdg‘𝐺) |
| 36 | 8, 35 | eqtri 2644 |
. . . . . . . . . . 11
⊢ 𝐸 = ran (iEdg‘𝐺) |
| 37 | 36 | eleq2i 2693 |
. . . . . . . . . 10
⊢ (𝑝 ∈ 𝐸 ↔ 𝑝 ∈ ran (iEdg‘𝐺)) |
| 38 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
| 39 | 12, 38 | upgrf 25981 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ UPGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}) |
| 40 | | frn 6053 |
. . . . . . . . . . . 12
⊢
((iEdg‘𝐺):dom
(iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} → ran
(iEdg‘𝐺) ⊆
{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(#‘𝑥) ≤
2}) |
| 41 | 39, 40 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ UPGraph → ran
(iEdg‘𝐺) ⊆
{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(#‘𝑥) ≤
2}) |
| 42 | 41 | sseld 3602 |
. . . . . . . . . 10
⊢ (𝐺 ∈ UPGraph → (𝑝 ∈ ran (iEdg‘𝐺) → 𝑝 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2})) |
| 43 | 37, 42 | syl5bi 232 |
. . . . . . . . 9
⊢ (𝐺 ∈ UPGraph → (𝑝 ∈ 𝐸 → 𝑝 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2})) |
| 44 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑝 → (#‘𝑥) = (#‘𝑝)) |
| 45 | 44 | breq1d 4663 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑝 → ((#‘𝑥) ≤ 2 ↔ (#‘𝑝) ≤ 2)) |
| 46 | 45 | elrab 3363 |
. . . . . . . . . 10
⊢ (𝑝 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ↔ (𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∧
(#‘𝑝) ≤
2)) |
| 47 | 46 | simprbi 480 |
. . . . . . . . 9
⊢ (𝑝 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} → (#‘𝑝) ≤ 2) |
| 48 | 43, 47 | syl6 35 |
. . . . . . . 8
⊢ (𝐺 ∈ UPGraph → (𝑝 ∈ 𝐸 → (#‘𝑝) ≤ 2)) |
| 49 | 48 | adantr 481 |
. . . . . . 7
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (𝑝 ∈ 𝐸 → (#‘𝑝) ≤ 2)) |
| 50 | 34, 49 | syl5com 31 |
. . . . . 6
⊢ (𝑝 ∈ {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} → ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (#‘𝑝) ≤ 2)) |
| 51 | 50, 5 | eleq2s 2719 |
. . . . 5
⊢ (𝑝 ∈ 𝐹 → ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (#‘𝑝) ≤ 2)) |
| 52 | 51 | impcom 446 |
. . . 4
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑝 ∈ 𝐹) → (#‘𝑝) ≤ 2) |
| 53 | 33, 52 | ssrabdv 3681 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (#‘𝑝) ≤ 2}) |
| 54 | 4, 53 | fssd 6057 |
. 2
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (#‘𝑝) ≤ 2}) |
| 55 | | upgrres1.s |
. . . 4
⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 |
| 56 | | opex 4932 |
. . . 4
⊢
〈(𝑉 ∖
{𝑁}), ( I ↾ 𝐹)〉 ∈
V |
| 57 | 55, 56 | eqeltri 2697 |
. . 3
⊢ 𝑆 ∈ V |
| 58 | 12, 8, 5, 55 | upgrres1lem2 26203 |
. . . . 5
⊢
(Vtx‘𝑆) =
(𝑉 ∖ {𝑁}) |
| 59 | 58 | eqcomi 2631 |
. . . 4
⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
| 60 | 12, 8, 5, 55 | upgrres1lem3 26204 |
. . . . 5
⊢
(iEdg‘𝑆) = ( I
↾ 𝐹) |
| 61 | 60 | eqcomi 2631 |
. . . 4
⊢ ( I
↾ 𝐹) =
(iEdg‘𝑆) |
| 62 | 59, 61 | isupgr 25979 |
. . 3
⊢ (𝑆 ∈ V → (𝑆 ∈ UPGraph ↔ ( I
↾ 𝐹):dom ( I ↾
𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (#‘𝑝) ≤ 2})) |
| 63 | 57, 62 | mp1i 13 |
. 2
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (𝑆 ∈ UPGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (#‘𝑝) ≤ 2})) |
| 64 | 54, 63 | mpbird 247 |
1
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ UPGraph ) |