MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrss Structured version   Visualization version   GIF version

Theorem upgrss 25983
Description: An edge is a subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 29-Nov-2020.)
Hypotheses
Ref Expression
isupgr.v 𝑉 = (Vtx‘𝐺)
isupgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrss ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ⊆ 𝑉)

Proof of Theorem upgrss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3687 . . . 4 {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ⊆ (𝒫 𝑉 ∖ {∅})
2 difss 3737 . . . 4 (𝒫 𝑉 ∖ {∅}) ⊆ 𝒫 𝑉
31, 2sstri 3612 . . 3 {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ⊆ 𝒫 𝑉
4 isupgr.v . . . . 5 𝑉 = (Vtx‘𝐺)
5 isupgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
64, 5upgrf 25981 . . . 4 (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
76ffvelrnda 6359 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
83, 7sseldi 3601 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ∈ 𝒫 𝑉)
98elpwid 4170 1 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ⊆ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {crab 2916  cdif 3571  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177   class class class wbr 4653  dom cdm 5114  cfv 5888  cle 10075  2c2 11070  #chash 13117  Vtxcvtx 25874  iEdgciedg 25875   UPGraph cupgr 25975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-upgr 25977
This theorem is referenced by:  upgrex  25987
  Copyright terms: Public domain W3C validator