MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrun Structured version   Visualization version   GIF version

Theorem uspgrun 26080
Description: The union 𝑈 of two simple pseudographs 𝐺 and 𝐻 with the same vertex set 𝑉 is a pseudograph with the vertex 𝑉 and the union (𝐸𝐹) of the (indexed) edges. (Contributed by AV, 16-Oct-2020.)
Hypotheses
Ref Expression
uspgrun.g (𝜑𝐺 ∈ USPGraph )
uspgrun.h (𝜑𝐻 ∈ USPGraph )
uspgrun.e 𝐸 = (iEdg‘𝐺)
uspgrun.f 𝐹 = (iEdg‘𝐻)
uspgrun.vg 𝑉 = (Vtx‘𝐺)
uspgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
uspgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
uspgrun.u (𝜑𝑈𝑊)
uspgrun.v (𝜑 → (Vtx‘𝑈) = 𝑉)
uspgrun.un (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
Assertion
Ref Expression
uspgrun (𝜑𝑈 ∈ UPGraph )

Proof of Theorem uspgrun
StepHypRef Expression
1 uspgrun.g . . 3 (𝜑𝐺 ∈ USPGraph )
2 uspgrupgr 26071 . . 3 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph )
31, 2syl 17 . 2 (𝜑𝐺 ∈ UPGraph )
4 uspgrun.h . . 3 (𝜑𝐻 ∈ USPGraph )
5 uspgrupgr 26071 . . 3 (𝐻 ∈ USPGraph → 𝐻 ∈ UPGraph )
64, 5syl 17 . 2 (𝜑𝐻 ∈ UPGraph )
7 uspgrun.e . 2 𝐸 = (iEdg‘𝐺)
8 uspgrun.f . 2 𝐹 = (iEdg‘𝐻)
9 uspgrun.vg . 2 𝑉 = (Vtx‘𝐺)
10 uspgrun.vh . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
11 uspgrun.i . 2 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
12 uspgrun.u . 2 (𝜑𝑈𝑊)
13 uspgrun.v . 2 (𝜑 → (Vtx‘𝑈) = 𝑉)
14 uspgrun.un . 2 (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
153, 6, 7, 8, 9, 10, 11, 12, 13, 14upgrun 26013 1 (𝜑𝑈 ∈ UPGraph )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  cun 3572  cin 3573  c0 3915  dom cdm 5114  cfv 5888  Vtxcvtx 25874  iEdgciedg 25875   UPGraph cupgr 25975   USPGraph cuspgr 26043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fv 5896  df-upgr 25977  df-uspgr 26045
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator