MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustund Structured version   Visualization version   GIF version

Theorem ustund 22025
Description: If two intersecting sets 𝐴 and 𝐵 are both small in 𝑉, their union is small in (𝑉↑2). Proposition 1 of [BourbakiTop1] p. II.12. This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 17-Nov-2017.)
Hypotheses
Ref Expression
ustund.1 (𝜑 → (𝐴 × 𝐴) ⊆ 𝑉)
ustund.2 (𝜑 → (𝐵 × 𝐵) ⊆ 𝑉)
ustund.3 (𝜑 → (𝐴𝐵) ≠ ∅)
Assertion
Ref Expression
ustund (𝜑 → ((𝐴𝐵) × (𝐴𝐵)) ⊆ (𝑉𝑉))

Proof of Theorem ustund
StepHypRef Expression
1 ustund.3 . . 3 (𝜑 → (𝐴𝐵) ≠ ∅)
2 xpco 5675 . . 3 ((𝐴𝐵) ≠ ∅ → (((𝐴𝐵) × (𝐴𝐵)) ∘ ((𝐴𝐵) × (𝐴𝐵))) = ((𝐴𝐵) × (𝐴𝐵)))
31, 2syl 17 . 2 (𝜑 → (((𝐴𝐵) × (𝐴𝐵)) ∘ ((𝐴𝐵) × (𝐴𝐵))) = ((𝐴𝐵) × (𝐴𝐵)))
4 xpundir 5172 . . . . 5 ((𝐴𝐵) × (𝐴𝐵)) = ((𝐴 × (𝐴𝐵)) ∪ (𝐵 × (𝐴𝐵)))
5 xpindi 5255 . . . . . . 7 (𝐴 × (𝐴𝐵)) = ((𝐴 × 𝐴) ∩ (𝐴 × 𝐵))
6 inss1 3833 . . . . . . . 8 ((𝐴 × 𝐴) ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐴)
7 ustund.1 . . . . . . . 8 (𝜑 → (𝐴 × 𝐴) ⊆ 𝑉)
86, 7syl5ss 3614 . . . . . . 7 (𝜑 → ((𝐴 × 𝐴) ∩ (𝐴 × 𝐵)) ⊆ 𝑉)
95, 8syl5eqss 3649 . . . . . 6 (𝜑 → (𝐴 × (𝐴𝐵)) ⊆ 𝑉)
10 xpindi 5255 . . . . . . 7 (𝐵 × (𝐴𝐵)) = ((𝐵 × 𝐴) ∩ (𝐵 × 𝐵))
11 inss2 3834 . . . . . . . 8 ((𝐵 × 𝐴) ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵)
12 ustund.2 . . . . . . . 8 (𝜑 → (𝐵 × 𝐵) ⊆ 𝑉)
1311, 12syl5ss 3614 . . . . . . 7 (𝜑 → ((𝐵 × 𝐴) ∩ (𝐵 × 𝐵)) ⊆ 𝑉)
1410, 13syl5eqss 3649 . . . . . 6 (𝜑 → (𝐵 × (𝐴𝐵)) ⊆ 𝑉)
159, 14unssd 3789 . . . . 5 (𝜑 → ((𝐴 × (𝐴𝐵)) ∪ (𝐵 × (𝐴𝐵))) ⊆ 𝑉)
164, 15syl5eqss 3649 . . . 4 (𝜑 → ((𝐴𝐵) × (𝐴𝐵)) ⊆ 𝑉)
17 coss2 5278 . . . 4 (((𝐴𝐵) × (𝐴𝐵)) ⊆ 𝑉 → (((𝐴𝐵) × (𝐴𝐵)) ∘ ((𝐴𝐵) × (𝐴𝐵))) ⊆ (((𝐴𝐵) × (𝐴𝐵)) ∘ 𝑉))
1816, 17syl 17 . . 3 (𝜑 → (((𝐴𝐵) × (𝐴𝐵)) ∘ ((𝐴𝐵) × (𝐴𝐵))) ⊆ (((𝐴𝐵) × (𝐴𝐵)) ∘ 𝑉))
19 xpundi 5171 . . . . 5 ((𝐴𝐵) × (𝐴𝐵)) = (((𝐴𝐵) × 𝐴) ∪ ((𝐴𝐵) × 𝐵))
20 xpindir 5256 . . . . . . 7 ((𝐴𝐵) × 𝐴) = ((𝐴 × 𝐴) ∩ (𝐵 × 𝐴))
21 inss1 3833 . . . . . . . 8 ((𝐴 × 𝐴) ∩ (𝐵 × 𝐴)) ⊆ (𝐴 × 𝐴)
2221, 7syl5ss 3614 . . . . . . 7 (𝜑 → ((𝐴 × 𝐴) ∩ (𝐵 × 𝐴)) ⊆ 𝑉)
2320, 22syl5eqss 3649 . . . . . 6 (𝜑 → ((𝐴𝐵) × 𝐴) ⊆ 𝑉)
24 xpindir 5256 . . . . . . 7 ((𝐴𝐵) × 𝐵) = ((𝐴 × 𝐵) ∩ (𝐵 × 𝐵))
25 inss2 3834 . . . . . . . 8 ((𝐴 × 𝐵) ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵)
2625, 12syl5ss 3614 . . . . . . 7 (𝜑 → ((𝐴 × 𝐵) ∩ (𝐵 × 𝐵)) ⊆ 𝑉)
2724, 26syl5eqss 3649 . . . . . 6 (𝜑 → ((𝐴𝐵) × 𝐵) ⊆ 𝑉)
2823, 27unssd 3789 . . . . 5 (𝜑 → (((𝐴𝐵) × 𝐴) ∪ ((𝐴𝐵) × 𝐵)) ⊆ 𝑉)
2919, 28syl5eqss 3649 . . . 4 (𝜑 → ((𝐴𝐵) × (𝐴𝐵)) ⊆ 𝑉)
30 coss1 5277 . . . 4 (((𝐴𝐵) × (𝐴𝐵)) ⊆ 𝑉 → (((𝐴𝐵) × (𝐴𝐵)) ∘ 𝑉) ⊆ (𝑉𝑉))
3129, 30syl 17 . . 3 (𝜑 → (((𝐴𝐵) × (𝐴𝐵)) ∘ 𝑉) ⊆ (𝑉𝑉))
3218, 31sstrd 3613 . 2 (𝜑 → (((𝐴𝐵) × (𝐴𝐵)) ∘ ((𝐴𝐵) × (𝐴𝐵))) ⊆ (𝑉𝑉))
333, 32eqsstr3d 3640 1 (𝜑 → ((𝐴𝐵) × (𝐴𝐵)) ⊆ (𝑉𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wne 2794  cun 3572  cin 3573  wss 3574  c0 3915   × cxp 5112  ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-co 5123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator