| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ustund | Structured version Visualization version Unicode version | ||
| Description: If two intersecting sets
|
| Ref | Expression |
|---|---|
| ustund.1 |
|
| ustund.2 |
|
| ustund.3 |
|
| Ref | Expression |
|---|---|
| ustund |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ustund.3 |
. . 3
| |
| 2 | xpco 5675 |
. . 3
| |
| 3 | 1, 2 | syl 17 |
. 2
|
| 4 | xpundir 5172 |
. . . . 5
| |
| 5 | xpindi 5255 |
. . . . . . 7
| |
| 6 | inss1 3833 |
. . . . . . . 8
| |
| 7 | ustund.1 |
. . . . . . . 8
| |
| 8 | 6, 7 | syl5ss 3614 |
. . . . . . 7
|
| 9 | 5, 8 | syl5eqss 3649 |
. . . . . 6
|
| 10 | xpindi 5255 |
. . . . . . 7
| |
| 11 | inss2 3834 |
. . . . . . . 8
| |
| 12 | ustund.2 |
. . . . . . . 8
| |
| 13 | 11, 12 | syl5ss 3614 |
. . . . . . 7
|
| 14 | 10, 13 | syl5eqss 3649 |
. . . . . 6
|
| 15 | 9, 14 | unssd 3789 |
. . . . 5
|
| 16 | 4, 15 | syl5eqss 3649 |
. . . 4
|
| 17 | coss2 5278 |
. . . 4
| |
| 18 | 16, 17 | syl 17 |
. . 3
|
| 19 | xpundi 5171 |
. . . . 5
| |
| 20 | xpindir 5256 |
. . . . . . 7
| |
| 21 | inss1 3833 |
. . . . . . . 8
| |
| 22 | 21, 7 | syl5ss 3614 |
. . . . . . 7
|
| 23 | 20, 22 | syl5eqss 3649 |
. . . . . 6
|
| 24 | xpindir 5256 |
. . . . . . 7
| |
| 25 | inss2 3834 |
. . . . . . . 8
| |
| 26 | 25, 12 | syl5ss 3614 |
. . . . . . 7
|
| 27 | 24, 26 | syl5eqss 3649 |
. . . . . 6
|
| 28 | 23, 27 | unssd 3789 |
. . . . 5
|
| 29 | 19, 28 | syl5eqss 3649 |
. . . 4
|
| 30 | coss1 5277 |
. . . 4
| |
| 31 | 29, 30 | syl 17 |
. . 3
|
| 32 | 18, 31 | sstrd 3613 |
. 2
|
| 33 | 3, 32 | eqsstr3d 3640 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-co 5123 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |