![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > volres | Structured version Visualization version GIF version |
Description: A self-referencing abbreviated definition of the Lebesgue measure. (Contributed by Mario Carneiro, 19-Mar-2014.) |
Ref | Expression |
---|---|
volres | ⊢ vol = (vol* ↾ dom vol) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resdmres 5625 | . 2 ⊢ (vol* ↾ dom (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))})) = (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))}) | |
2 | df-vol 23234 | . . . 4 ⊢ vol = (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))}) | |
3 | 2 | dmeqi 5325 | . . 3 ⊢ dom vol = dom (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))}) |
4 | 3 | reseq2i 5393 | . 2 ⊢ (vol* ↾ dom vol) = (vol* ↾ dom (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))})) |
5 | 1, 4, 2 | 3eqtr4ri 2655 | 1 ⊢ vol = (vol* ↾ dom vol) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 {cab 2608 ∀wral 2912 ∖ cdif 3571 ∩ cin 3573 ◡ccnv 5113 dom cdm 5114 ↾ cres 5116 “ cima 5117 ‘cfv 5888 (class class class)co 6650 ℝcr 9935 + caddc 9939 vol*covol 23231 volcvol 23232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-vol 23234 |
This theorem is referenced by: volf 23297 mblvol 23298 |
Copyright terms: Public domain | W3C validator |