![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wecmpep | Structured version Visualization version GIF version |
Description: The elements of an epsilon well-ordering are comparable. (Contributed by NM, 17-May-1994.) |
Ref | Expression |
---|---|
wecmpep | ⊢ (( E We 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | weso 5105 | . 2 ⊢ ( E We 𝐴 → E Or 𝐴) | |
2 | solin 5058 | . . 3 ⊢ (( E Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥)) | |
3 | epel 5032 | . . . 4 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
4 | biid 251 | . . . 4 ⊢ (𝑥 = 𝑦 ↔ 𝑥 = 𝑦) | |
5 | epel 5032 | . . . 4 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
6 | 3, 4, 5 | 3orbi123i 1252 | . . 3 ⊢ ((𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥) ↔ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
7 | 2, 6 | sylib 208 | . 2 ⊢ (( E Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
8 | 1, 7 | sylan 488 | 1 ⊢ (( E We 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∨ w3o 1036 ∈ wcel 1990 class class class wbr 4653 E cep 5028 Or wor 5034 We wwe 5072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-eprel 5029 df-so 5036 df-we 5075 |
This theorem is referenced by: tz7.7 5749 |
Copyright terms: Public domain | W3C validator |