| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > weeq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for well-orders. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
| Ref | Expression |
|---|---|
| weeq12d.l | ⊢ (𝜑 → 𝑅 = 𝑆) |
| weeq12d.r | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| weeq12d | ⊢ (𝜑 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | weeq12d.l | . . 3 ⊢ (𝜑 → 𝑅 = 𝑆) | |
| 2 | weeq1 5102 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐴)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐴)) |
| 4 | weeq12d.r | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 5 | weeq2 5103 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑆 We 𝐴 ↔ 𝑆 We 𝐵)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝑆 We 𝐴 ↔ 𝑆 We 𝐵)) |
| 7 | 3, 6 | bitrd 268 | 1 ⊢ (𝜑 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 We wwe 5072 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-ral 2917 df-rex 2918 df-in 3581 df-ss 3588 df-br 4654 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 |
| This theorem is referenced by: fnwe2lem1 37620 aomclem1 37624 aomclem4 37627 aomclem5 37628 aomclem6 37629 |
| Copyright terms: Public domain | W3C validator |