Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsuc2 Structured version   Visualization version   GIF version

Theorem limsuc2 37611
Description: Limit ordinals in the sense inclusive of zero contain all successors of their members. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Assertion
Ref Expression
limsuc2 ((Ord 𝐴𝐴 = 𝐴) → (𝐵𝐴 ↔ suc 𝐵𝐴))

Proof of Theorem limsuc2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ordunisuc2 7044 . . . . 5 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ∀𝑥𝐴 suc 𝑥𝐴))
21biimpa 501 . . . 4 ((Ord 𝐴𝐴 = 𝐴) → ∀𝑥𝐴 suc 𝑥𝐴)
3 suceq 5790 . . . . . 6 (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵)
43eleq1d 2686 . . . . 5 (𝑥 = 𝐵 → (suc 𝑥𝐴 ↔ suc 𝐵𝐴))
54rspccva 3308 . . . 4 ((∀𝑥𝐴 suc 𝑥𝐴𝐵𝐴) → suc 𝐵𝐴)
62, 5sylan 488 . . 3 (((Ord 𝐴𝐴 = 𝐴) ∧ 𝐵𝐴) → suc 𝐵𝐴)
76ex 450 . 2 ((Ord 𝐴𝐴 = 𝐴) → (𝐵𝐴 → suc 𝐵𝐴))
8 ordtr 5737 . . . 4 (Ord 𝐴 → Tr 𝐴)
9 trsuc 5810 . . . . 5 ((Tr 𝐴 ∧ suc 𝐵𝐴) → 𝐵𝐴)
109ex 450 . . . 4 (Tr 𝐴 → (suc 𝐵𝐴𝐵𝐴))
118, 10syl 17 . . 3 (Ord 𝐴 → (suc 𝐵𝐴𝐵𝐴))
1211adantr 481 . 2 ((Ord 𝐴𝐴 = 𝐴) → (suc 𝐵𝐴𝐵𝐴))
137, 12impbid 202 1 ((Ord 𝐴𝐴 = 𝐴) → (𝐵𝐴 ↔ suc 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912   cuni 4436  Tr wtr 4752  Ord word 5722  suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-suc 5729
This theorem is referenced by:  aomclem4  37627
  Copyright terms: Public domain W3C validator