Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem6 Structured version   Visualization version   GIF version

Theorem aomclem6 37629
Description: Lemma for dfac11 37632. Transfinite induction, close over 𝑧. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
aomclem6.b 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
aomclem6.c 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
aomclem6.d 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
aomclem6.e 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
aomclem6.f 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
aomclem6.g 𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)))
aomclem6.h 𝐻 = recs((𝑧 ∈ V ↦ 𝐺))
aomclem6.a (𝜑𝐴 ∈ On)
aomclem6.y (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
Assertion
Ref Expression
aomclem6 (𝜑 → (𝐻𝐴) We (𝑅1𝐴))
Distinct variable groups:   𝑦,𝑧,𝑎,𝑏,𝑐,𝑑   𝜑,𝑎,𝑏,𝑐,𝑑,𝑧   𝐶,𝑎,𝑏,𝑐,𝑑   𝐷,𝑎,𝑏,𝑐,𝑑   𝐴,𝑎,𝑏,𝑐,𝑑,𝑧   𝐻,𝑎,𝑏,𝑐,𝑑,𝑧   𝐺,𝑑
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑦,𝑧)   𝐷(𝑦,𝑧)   𝐸(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐺(𝑦,𝑧,𝑎,𝑏,𝑐)   𝐻(𝑦)

Proof of Theorem aomclem6
StepHypRef Expression
1 ssid 3624 . 2 𝐴𝐴
2 aomclem6.a . . . 4 (𝜑𝐴 ∈ On)
32adantr 481 . . 3 ((𝜑𝐴𝐴) → 𝐴 ∈ On)
4 sseq1 3626 . . . . . 6 (𝑐 = 𝑑 → (𝑐𝐴𝑑𝐴))
54anbi2d 740 . . . . 5 (𝑐 = 𝑑 → ((𝜑𝑐𝐴) ↔ (𝜑𝑑𝐴)))
6 fveq2 6191 . . . . . 6 (𝑐 = 𝑑 → (𝐻𝑐) = (𝐻𝑑))
7 fveq2 6191 . . . . . 6 (𝑐 = 𝑑 → (𝑅1𝑐) = (𝑅1𝑑))
86, 7weeq12d 37610 . . . . 5 (𝑐 = 𝑑 → ((𝐻𝑐) We (𝑅1𝑐) ↔ (𝐻𝑑) We (𝑅1𝑑)))
95, 8imbi12d 334 . . . 4 (𝑐 = 𝑑 → (((𝜑𝑐𝐴) → (𝐻𝑐) We (𝑅1𝑐)) ↔ ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑))))
10 sseq1 3626 . . . . . 6 (𝑐 = 𝐴 → (𝑐𝐴𝐴𝐴))
1110anbi2d 740 . . . . 5 (𝑐 = 𝐴 → ((𝜑𝑐𝐴) ↔ (𝜑𝐴𝐴)))
12 fveq2 6191 . . . . . 6 (𝑐 = 𝐴 → (𝐻𝑐) = (𝐻𝐴))
13 fveq2 6191 . . . . . 6 (𝑐 = 𝐴 → (𝑅1𝑐) = (𝑅1𝐴))
1412, 13weeq12d 37610 . . . . 5 (𝑐 = 𝐴 → ((𝐻𝑐) We (𝑅1𝑐) ↔ (𝐻𝐴) We (𝑅1𝐴)))
1511, 14imbi12d 334 . . . 4 (𝑐 = 𝐴 → (((𝜑𝑐𝐴) → (𝐻𝑐) We (𝑅1𝑐)) ↔ ((𝜑𝐴𝐴) → (𝐻𝐴) We (𝑅1𝐴))))
16 aomclem6.b . . . . . . . . . . . . . 14 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
17 aomclem6.c . . . . . . . . . . . . . 14 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
18 aomclem6.d . . . . . . . . . . . . . 14 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
19 aomclem6.e . . . . . . . . . . . . . 14 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
20 aomclem6.f . . . . . . . . . . . . . 14 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
21 aomclem6.g . . . . . . . . . . . . . 14 𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)))
22 dmeq 5324 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐻𝑐) → dom 𝑧 = dom (𝐻𝑐))
2322adantl 482 . . . . . . . . . . . . . . . 16 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → dom 𝑧 = dom (𝐻𝑐))
24 simpl1 1064 . . . . . . . . . . . . . . . . 17 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝑐 ∈ On)
25 onss 6990 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ On → 𝑐 ⊆ On)
26 aomclem6.h . . . . . . . . . . . . . . . . . . 19 𝐻 = recs((𝑧 ∈ V ↦ 𝐺))
2726tfr1 7493 . . . . . . . . . . . . . . . . . 18 𝐻 Fn On
28 fnssres 6004 . . . . . . . . . . . . . . . . . 18 ((𝐻 Fn On ∧ 𝑐 ⊆ On) → (𝐻𝑐) Fn 𝑐)
2927, 28mpan 706 . . . . . . . . . . . . . . . . 17 (𝑐 ⊆ On → (𝐻𝑐) Fn 𝑐)
30 fndm 5990 . . . . . . . . . . . . . . . . 17 ((𝐻𝑐) Fn 𝑐 → dom (𝐻𝑐) = 𝑐)
3124, 25, 29, 304syl 19 . . . . . . . . . . . . . . . 16 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → dom (𝐻𝑐) = 𝑐)
3223, 31eqtrd 2656 . . . . . . . . . . . . . . 15 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → dom 𝑧 = 𝑐)
3332, 24eqeltrd 2701 . . . . . . . . . . . . . 14 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → dom 𝑧 ∈ On)
3432eleq2d 2687 . . . . . . . . . . . . . . . . . 18 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → (𝑎 ∈ dom 𝑧𝑎𝑐))
3534biimpa 501 . . . . . . . . . . . . . . . . 17 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → 𝑎𝑐)
36 simpll2 1101 . . . . . . . . . . . . . . . . 17 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)))
37 simpl3l 1116 . . . . . . . . . . . . . . . . . 18 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝜑)
3837adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → 𝜑)
39 onelss 5766 . . . . . . . . . . . . . . . . . . . 20 (dom 𝑧 ∈ On → (𝑎 ∈ dom 𝑧𝑎 ⊆ dom 𝑧))
4033, 39syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → (𝑎 ∈ dom 𝑧𝑎 ⊆ dom 𝑧))
4140imp 445 . . . . . . . . . . . . . . . . . 18 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → 𝑎 ⊆ dom 𝑧)
42 simpl3r 1117 . . . . . . . . . . . . . . . . . . . 20 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝑐𝐴)
4332, 42eqsstrd 3639 . . . . . . . . . . . . . . . . . . 19 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → dom 𝑧𝐴)
4443adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → dom 𝑧𝐴)
4541, 44sstrd 3613 . . . . . . . . . . . . . . . . 17 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → 𝑎𝐴)
46 sseq1 3626 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑎 → (𝑑𝐴𝑎𝐴))
4746anbi2d 740 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = 𝑎 → ((𝜑𝑑𝐴) ↔ (𝜑𝑎𝐴)))
48 fveq2 6191 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑎 → (𝐻𝑑) = (𝐻𝑎))
49 fveq2 6191 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑎 → (𝑅1𝑑) = (𝑅1𝑎))
5048, 49weeq12d 37610 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = 𝑎 → ((𝐻𝑑) We (𝑅1𝑑) ↔ (𝐻𝑎) We (𝑅1𝑎)))
5147, 50imbi12d 334 . . . . . . . . . . . . . . . . . . 19 (𝑑 = 𝑎 → (((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ↔ ((𝜑𝑎𝐴) → (𝐻𝑎) We (𝑅1𝑎))))
5251rspcva 3307 . . . . . . . . . . . . . . . . . 18 ((𝑎𝑐 ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑))) → ((𝜑𝑎𝐴) → (𝐻𝑎) We (𝑅1𝑎)))
5352imp 445 . . . . . . . . . . . . . . . . 17 (((𝑎𝑐 ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑))) ∧ (𝜑𝑎𝐴)) → (𝐻𝑎) We (𝑅1𝑎))
5435, 36, 38, 45, 53syl22anc 1327 . . . . . . . . . . . . . . . 16 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → (𝐻𝑎) We (𝑅1𝑎))
55 fveq1 6190 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝐻𝑐) → (𝑧𝑎) = ((𝐻𝑐)‘𝑎))
5655ad2antlr 763 . . . . . . . . . . . . . . . . . 18 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → (𝑧𝑎) = ((𝐻𝑐)‘𝑎))
57 fvres 6207 . . . . . . . . . . . . . . . . . . 19 (𝑎𝑐 → ((𝐻𝑐)‘𝑎) = (𝐻𝑎))
5835, 57syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → ((𝐻𝑐)‘𝑎) = (𝐻𝑎))
5956, 58eqtrd 2656 . . . . . . . . . . . . . . . . 17 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → (𝑧𝑎) = (𝐻𝑎))
60 weeq1 5102 . . . . . . . . . . . . . . . . 17 ((𝑧𝑎) = (𝐻𝑎) → ((𝑧𝑎) We (𝑅1𝑎) ↔ (𝐻𝑎) We (𝑅1𝑎)))
6159, 60syl 17 . . . . . . . . . . . . . . . 16 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → ((𝑧𝑎) We (𝑅1𝑎) ↔ (𝐻𝑎) We (𝑅1𝑎)))
6254, 61mpbird 247 . . . . . . . . . . . . . . 15 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → (𝑧𝑎) We (𝑅1𝑎))
6362ralrimiva 2966 . . . . . . . . . . . . . 14 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
6437, 2syl 17 . . . . . . . . . . . . . 14 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝐴 ∈ On)
65 aomclem6.y . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
6637, 65syl 17 . . . . . . . . . . . . . 14 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
6716, 17, 18, 19, 20, 21, 33, 63, 64, 43, 66aomclem5 37628 . . . . . . . . . . . . 13 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝐺 We (𝑅1‘dom 𝑧))
6832fveq2d 6195 . . . . . . . . . . . . . 14 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → (𝑅1‘dom 𝑧) = (𝑅1𝑐))
69 weeq2 5103 . . . . . . . . . . . . . 14 ((𝑅1‘dom 𝑧) = (𝑅1𝑐) → (𝐺 We (𝑅1‘dom 𝑧) ↔ 𝐺 We (𝑅1𝑐)))
7068, 69syl 17 . . . . . . . . . . . . 13 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → (𝐺 We (𝑅1‘dom 𝑧) ↔ 𝐺 We (𝑅1𝑐)))
7167, 70mpbid 222 . . . . . . . . . . . 12 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝐺 We (𝑅1𝑐))
7271ex 450 . . . . . . . . . . 11 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → (𝑧 = (𝐻𝑐) → 𝐺 We (𝑅1𝑐)))
7372alrimiv 1855 . . . . . . . . . 10 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → ∀𝑧(𝑧 = (𝐻𝑐) → 𝐺 We (𝑅1𝑐)))
74 nfv 1843 . . . . . . . . . . 11 𝑑(𝑧 = (𝐻𝑐) → 𝐺 We (𝑅1𝑐))
75 nfv 1843 . . . . . . . . . . . 12 𝑧 𝑑 = (𝐻𝑐)
76 nfsbc1v 3455 . . . . . . . . . . . 12 𝑧[𝑑 / 𝑧]𝐺 We (𝑅1𝑐)
7775, 76nfim 1825 . . . . . . . . . . 11 𝑧(𝑑 = (𝐻𝑐) → [𝑑 / 𝑧]𝐺 We (𝑅1𝑐))
78 eqeq1 2626 . . . . . . . . . . . 12 (𝑧 = 𝑑 → (𝑧 = (𝐻𝑐) ↔ 𝑑 = (𝐻𝑐)))
79 sbceq1a 3446 . . . . . . . . . . . 12 (𝑧 = 𝑑 → (𝐺 We (𝑅1𝑐) ↔ [𝑑 / 𝑧]𝐺 We (𝑅1𝑐)))
8078, 79imbi12d 334 . . . . . . . . . . 11 (𝑧 = 𝑑 → ((𝑧 = (𝐻𝑐) → 𝐺 We (𝑅1𝑐)) ↔ (𝑑 = (𝐻𝑐) → [𝑑 / 𝑧]𝐺 We (𝑅1𝑐))))
8174, 77, 80cbval 2271 . . . . . . . . . 10 (∀𝑧(𝑧 = (𝐻𝑐) → 𝐺 We (𝑅1𝑐)) ↔ ∀𝑑(𝑑 = (𝐻𝑐) → [𝑑 / 𝑧]𝐺 We (𝑅1𝑐)))
8273, 81sylib 208 . . . . . . . . 9 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → ∀𝑑(𝑑 = (𝐻𝑐) → [𝑑 / 𝑧]𝐺 We (𝑅1𝑐)))
83 nfsbc1v 3455 . . . . . . . . . 10 𝑑[(𝐻𝑐) / 𝑑][𝑑 / 𝑧]𝐺 We (𝑅1𝑐)
84 fnfun 5988 . . . . . . . . . . . 12 (𝐻 Fn On → Fun 𝐻)
8527, 84ax-mp 5 . . . . . . . . . . 11 Fun 𝐻
86 vex 3203 . . . . . . . . . . 11 𝑐 ∈ V
87 resfunexg 6479 . . . . . . . . . . 11 ((Fun 𝐻𝑐 ∈ V) → (𝐻𝑐) ∈ V)
8885, 86, 87mp2an 708 . . . . . . . . . 10 (𝐻𝑐) ∈ V
89 sbceq1a 3446 . . . . . . . . . 10 (𝑑 = (𝐻𝑐) → ([𝑑 / 𝑧]𝐺 We (𝑅1𝑐) ↔ [(𝐻𝑐) / 𝑑][𝑑 / 𝑧]𝐺 We (𝑅1𝑐)))
9083, 88, 89ceqsal 3232 . . . . . . . . 9 (∀𝑑(𝑑 = (𝐻𝑐) → [𝑑 / 𝑧]𝐺 We (𝑅1𝑐)) ↔ [(𝐻𝑐) / 𝑑][𝑑 / 𝑧]𝐺 We (𝑅1𝑐))
9182, 90sylib 208 . . . . . . . 8 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → [(𝐻𝑐) / 𝑑][𝑑 / 𝑧]𝐺 We (𝑅1𝑐))
92 sbcco 3458 . . . . . . . 8 ([(𝐻𝑐) / 𝑑][𝑑 / 𝑧]𝐺 We (𝑅1𝑐) ↔ [(𝐻𝑐) / 𝑧]𝐺 We (𝑅1𝑐))
9391, 92sylib 208 . . . . . . 7 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → [(𝐻𝑐) / 𝑧]𝐺 We (𝑅1𝑐))
94 nfcsb1v 3549 . . . . . . . . . 10 𝑧(𝐻𝑐) / 𝑧𝐺
95 nfcv 2764 . . . . . . . . . 10 𝑧(𝑅1𝑐)
9694, 95nfwe 5090 . . . . . . . . 9 𝑧(𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)
97 csbeq1a 3542 . . . . . . . . . 10 (𝑧 = (𝐻𝑐) → 𝐺 = (𝐻𝑐) / 𝑧𝐺)
98 weeq1 5102 . . . . . . . . . 10 (𝐺 = (𝐻𝑐) / 𝑧𝐺 → (𝐺 We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
9997, 98syl 17 . . . . . . . . 9 (𝑧 = (𝐻𝑐) → (𝐺 We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
10096, 99sbciegf 3467 . . . . . . . 8 ((𝐻𝑐) ∈ V → ([(𝐻𝑐) / 𝑧]𝐺 We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
10188, 100ax-mp 5 . . . . . . 7 ([(𝐻𝑐) / 𝑧]𝐺 We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐))
10293, 101sylib 208 . . . . . 6 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐))
103 recsval 7500 . . . . . . . . 9 (𝑐 ∈ On → (recs((𝑧 ∈ V ↦ 𝐺))‘𝑐) = ((𝑧 ∈ V ↦ 𝐺)‘(recs((𝑧 ∈ V ↦ 𝐺)) ↾ 𝑐)))
10426fveq1i 6192 . . . . . . . . 9 (𝐻𝑐) = (recs((𝑧 ∈ V ↦ 𝐺))‘𝑐)
105 fvex 6201 . . . . . . . . . . . . . . 15 (𝑅1‘dom 𝑧) ∈ V
106105, 105xpex 6962 . . . . . . . . . . . . . 14 ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)) ∈ V
107106inex2 4800 . . . . . . . . . . . . 13 (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) ∈ V
10821, 107eqeltri 2697 . . . . . . . . . . . 12 𝐺 ∈ V
109108csbex 4793 . . . . . . . . . . 11 (𝐻𝑐) / 𝑧𝐺 ∈ V
110 eqid 2622 . . . . . . . . . . . 12 (𝑧 ∈ V ↦ 𝐺) = (𝑧 ∈ V ↦ 𝐺)
111110fvmpts 6285 . . . . . . . . . . 11 (((𝐻𝑐) ∈ V ∧ (𝐻𝑐) / 𝑧𝐺 ∈ V) → ((𝑧 ∈ V ↦ 𝐺)‘(𝐻𝑐)) = (𝐻𝑐) / 𝑧𝐺)
11288, 109, 111mp2an 708 . . . . . . . . . 10 ((𝑧 ∈ V ↦ 𝐺)‘(𝐻𝑐)) = (𝐻𝑐) / 𝑧𝐺
11326reseq1i 5392 . . . . . . . . . . 11 (𝐻𝑐) = (recs((𝑧 ∈ V ↦ 𝐺)) ↾ 𝑐)
114113fveq2i 6194 . . . . . . . . . 10 ((𝑧 ∈ V ↦ 𝐺)‘(𝐻𝑐)) = ((𝑧 ∈ V ↦ 𝐺)‘(recs((𝑧 ∈ V ↦ 𝐺)) ↾ 𝑐))
115112, 114eqtr3i 2646 . . . . . . . . 9 (𝐻𝑐) / 𝑧𝐺 = ((𝑧 ∈ V ↦ 𝐺)‘(recs((𝑧 ∈ V ↦ 𝐺)) ↾ 𝑐))
116103, 104, 1153eqtr4g 2681 . . . . . . . 8 (𝑐 ∈ On → (𝐻𝑐) = (𝐻𝑐) / 𝑧𝐺)
117 weeq1 5102 . . . . . . . 8 ((𝐻𝑐) = (𝐻𝑐) / 𝑧𝐺 → ((𝐻𝑐) We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
118116, 117syl 17 . . . . . . 7 (𝑐 ∈ On → ((𝐻𝑐) We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
1191183ad2ant1 1082 . . . . . 6 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → ((𝐻𝑐) We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
120102, 119mpbird 247 . . . . 5 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → (𝐻𝑐) We (𝑅1𝑐))
1211203exp 1264 . . . 4 (𝑐 ∈ On → (∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) → ((𝜑𝑐𝐴) → (𝐻𝑐) We (𝑅1𝑐))))
1229, 15, 121tfis3 7057 . . 3 (𝐴 ∈ On → ((𝜑𝐴𝐴) → (𝐻𝐴) We (𝑅1𝐴)))
1233, 122mpcom 38 . 2 ((𝜑𝐴𝐴) → (𝐻𝐴) We (𝑅1𝐴))
1241, 123mpan2 707 1 (𝜑 → (𝐻𝐴) We (𝑅1𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037  wal 1481   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  [wsbc 3435  csb 3533  cdif 3571  cin 3573  wss 3574  c0 3915  ifcif 4086  𝒫 cpw 4158  {csn 4177   cuni 4436   cint 4475   class class class wbr 4653  {copab 4712  cmpt 4729   E cep 5028   We wwe 5072   × cxp 5112  ccnv 5113  dom cdm 5114  ran crn 5115  cres 5116  cima 5117  Oncon0 5723  suc csuc 5725  Fun wfun 5882   Fn wfn 5883  cfv 5888  recscrecs 7467  Fincfn 7955  supcsup 8346  𝑅1cr1 8625  rankcrnk 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-sup 8348  df-r1 8627  df-rank 8628
This theorem is referenced by:  aomclem7  37630
  Copyright terms: Public domain W3C validator