![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunpr | Structured version Visualization version GIF version |
Description: A weak universe is closed under pairing. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
wunpr.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Ref | Expression |
---|---|
wunpr | ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wununi.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
2 | wunpr.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
3 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
4 | iswun 9526 | . . . . 5 ⊢ (𝑈 ∈ WUni → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) | |
5 | 4 | ibi 256 | . . . 4 ⊢ (𝑈 ∈ WUni → (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈))) |
6 | 5 | simp3d 1075 | . . 3 ⊢ (𝑈 ∈ WUni → ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)) |
7 | simp3 1063 | . . . 4 ⊢ ((∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) → ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) | |
8 | 7 | ralimi 2952 | . . 3 ⊢ (∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) → ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) |
9 | 3, 6, 8 | 3syl 18 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) |
10 | preq1 4268 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥, 𝑦} = {𝐴, 𝑦}) | |
11 | 10 | eleq1d 2686 | . . 3 ⊢ (𝑥 = 𝐴 → ({𝑥, 𝑦} ∈ 𝑈 ↔ {𝐴, 𝑦} ∈ 𝑈)) |
12 | preq2 4269 | . . . 4 ⊢ (𝑦 = 𝐵 → {𝐴, 𝑦} = {𝐴, 𝐵}) | |
13 | 12 | eleq1d 2686 | . . 3 ⊢ (𝑦 = 𝐵 → ({𝐴, 𝑦} ∈ 𝑈 ↔ {𝐴, 𝐵} ∈ 𝑈)) |
14 | 11, 13 | rspc2va 3323 | . 2 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) → {𝐴, 𝐵} ∈ 𝑈) |
15 | 1, 2, 9, 14 | syl21anc 1325 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 ∅c0 3915 𝒫 cpw 4158 {cpr 4179 ∪ cuni 4436 Tr wtr 4752 WUnicwun 9522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-un 3579 df-in 3581 df-ss 3588 df-sn 4178 df-pr 4180 df-uni 4437 df-tr 4753 df-wun 9524 |
This theorem is referenced by: wunun 9532 wuntp 9533 wunsn 9538 wunop 9544 intwun 9557 wuncval2 9569 |
Copyright terms: Public domain | W3C validator |