| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wuntp | Structured version Visualization version GIF version | ||
| Description: A weak universe is closed under unordered triple. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| wunpr.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| wuntp.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wuntp | ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpass 4287 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴} ∪ {𝐵, 𝐶}) | |
| 2 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 3 | dfsn2 4190 | . . . 4 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 4 | wununi.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 5 | 2, 4, 4 | wunpr 9531 | . . . 4 ⊢ (𝜑 → {𝐴, 𝐴} ∈ 𝑈) |
| 6 | 3, 5 | syl5eqel 2705 | . . 3 ⊢ (𝜑 → {𝐴} ∈ 𝑈) |
| 7 | wunpr.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
| 8 | wuntp.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 9 | 2, 7, 8 | wunpr 9531 | . . 3 ⊢ (𝜑 → {𝐵, 𝐶} ∈ 𝑈) |
| 10 | 2, 6, 9 | wunun 9532 | . 2 ⊢ (𝜑 → ({𝐴} ∪ {𝐵, 𝐶}) ∈ 𝑈) |
| 11 | 1, 10 | syl5eqel 2705 | 1 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 1990 ∪ cun 3572 {csn 4177 {cpr 4179 {ctp 4181 WUnicwun 9522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-un 3579 df-in 3581 df-ss 3588 df-sn 4178 df-pr 4180 df-tp 4182 df-uni 4437 df-tr 4753 df-wun 9524 |
| This theorem is referenced by: catcfuccl 16759 catcxpccl 16847 |
| Copyright terms: Public domain | W3C validator |