![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspc2va | Structured version Visualization version GIF version |
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2va | ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
2 | rspc2v.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
3 | 1, 2 | rspc2v 3322 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
4 | 3 | imp 445 | 1 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 |
This theorem is referenced by: swopo 5045 soisores 6577 soisoi 6578 isocnv 6580 isotr 6586 ovrspc2v 6672 off 6912 caofrss 6930 caonncan 6935 wunpr 9531 injresinj 12589 seqcaopr2 12837 rlimcn2 14321 o1of2 14343 isprm6 15426 ssc2 16482 pospropd 17134 mhmpropd 17341 grpidssd 17491 grpinvssd 17492 dfgrp3lem 17513 isnsg3 17628 symgextf1 17841 efgredlemd 18157 efgredlem 18160 issrngd 18861 domneq0 19297 mplsubglem 19434 lindfind 20155 lindsind 20156 mdetunilem1 20418 mdetunilem3 20420 mdetunilem4 20421 mdetunilem9 20426 decpmatmulsumfsupp 20578 pm2mpf1 20604 pm2mpmhmlem1 20623 t0sep 21128 tsmsxplem2 21957 comet 22318 nrmmetd 22379 tngngp 22458 reconnlem2 22630 iscmet3lem1 23089 iscmet3lem2 23090 dchrisumlem1 25178 pntpbnd1 25275 motcgr 25431 perpneq 25609 foot 25614 f1otrg 25751 axcontlem10 25853 frgr2wwlk1 27193 tleile 29661 orngmul 29803 mndpluscn 29972 unelros 30234 difelros 30235 inelsros 30241 diffiunisros 30242 cvxsconn 31225 elmrsubrn 31417 ghomco 33690 mzpcl34 37294 ntrk0kbimka 38337 isotone1 38346 isotone2 38347 nnfoctbdjlem 40672 mgmhmpropd 41785 rnghmmul 41900 |
Copyright terms: Public domain | W3C validator |