| Step | Hyp | Ref
| Expression |
| 1 | | catcxpccl.o |
. . . . 5
⊢ 𝑇 = (𝑋 ×c 𝑌) |
| 2 | | eqid 2622 |
. . . . 5
⊢
(Base‘𝑋) =
(Base‘𝑋) |
| 3 | | eqid 2622 |
. . . . 5
⊢
(Base‘𝑌) =
(Base‘𝑌) |
| 4 | | eqid 2622 |
. . . . 5
⊢ (Hom
‘𝑋) = (Hom
‘𝑋) |
| 5 | | eqid 2622 |
. . . . 5
⊢ (Hom
‘𝑌) = (Hom
‘𝑌) |
| 6 | | eqid 2622 |
. . . . 5
⊢
(comp‘𝑋) =
(comp‘𝑋) |
| 7 | | eqid 2622 |
. . . . 5
⊢
(comp‘𝑌) =
(comp‘𝑌) |
| 8 | | catcxpccl.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 9 | | catcxpccl.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 10 | | eqidd 2623 |
. . . . 5
⊢ (𝜑 → ((Base‘𝑋) × (Base‘𝑌)) = ((Base‘𝑋) × (Base‘𝑌))) |
| 11 | 1, 2, 3 | xpcbas 16818 |
. . . . . . 7
⊢
((Base‘𝑋)
× (Base‘𝑌)) =
(Base‘𝑇) |
| 12 | | eqid 2622 |
. . . . . . 7
⊢ (Hom
‘𝑇) = (Hom
‘𝑇) |
| 13 | 1, 11, 4, 5, 12 | xpchomfval 16819 |
. . . . . 6
⊢ (Hom
‘𝑇) = (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st ‘𝑢)(Hom ‘𝑋)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑌)(2nd ‘𝑣)))) |
| 14 | 13 | a1i 11 |
. . . . 5
⊢ (𝜑 → (Hom ‘𝑇) = (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st ‘𝑢)(Hom ‘𝑋)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑌)(2nd ‘𝑣))))) |
| 15 | | eqidd 2623 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓))〉)) = (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓))〉))) |
| 16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
14, 15 | xpcval 16817 |
. . . 4
⊢ (𝜑 → 𝑇 = {〈(Base‘ndx),
((Base‘𝑋) ×
(Base‘𝑌))〉,
〈(Hom ‘ndx), (Hom ‘𝑇)〉, 〈(comp‘ndx), (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓))〉))〉}) |
| 17 | | catcxpccl.u |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ WUni) |
| 18 | | df-base 15863 |
. . . . . . 7
⊢ Base =
Slot 1 |
| 19 | | catcxpccl.1 |
. . . . . . . 8
⊢ (𝜑 → ω ∈ 𝑈) |
| 20 | 17, 19 | wunndx 15878 |
. . . . . . 7
⊢ (𝜑 → ndx ∈ 𝑈) |
| 21 | 18, 17, 20 | wunstr 15881 |
. . . . . 6
⊢ (𝜑 → (Base‘ndx) ∈
𝑈) |
| 22 | | inss1 3833 |
. . . . . . . . 9
⊢ (𝑈 ∩ Cat) ⊆ 𝑈 |
| 23 | | catcxpccl.c |
. . . . . . . . . . 11
⊢ 𝐶 = (CatCat‘𝑈) |
| 24 | | catcxpccl.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝐶) |
| 25 | 23, 24, 17 | catcbas 16747 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 = (𝑈 ∩ Cat)) |
| 26 | 8, 25 | eleqtrd 2703 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ (𝑈 ∩ Cat)) |
| 27 | 22, 26 | sseldi 3601 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| 28 | 18, 17, 27 | wunstr 15881 |
. . . . . . 7
⊢ (𝜑 → (Base‘𝑋) ∈ 𝑈) |
| 29 | 9, 25 | eleqtrd 2703 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ (𝑈 ∩ Cat)) |
| 30 | 22, 29 | sseldi 3601 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| 31 | 18, 17, 30 | wunstr 15881 |
. . . . . . 7
⊢ (𝜑 → (Base‘𝑌) ∈ 𝑈) |
| 32 | 17, 28, 31 | wunxp 9546 |
. . . . . 6
⊢ (𝜑 → ((Base‘𝑋) × (Base‘𝑌)) ∈ 𝑈) |
| 33 | 17, 21, 32 | wunop 9544 |
. . . . 5
⊢ (𝜑 → 〈(Base‘ndx),
((Base‘𝑋) ×
(Base‘𝑌))〉
∈ 𝑈) |
| 34 | | df-hom 15966 |
. . . . . . 7
⊢ Hom =
Slot ;14 |
| 35 | 34, 17, 20 | wunstr 15881 |
. . . . . 6
⊢ (𝜑 → (Hom ‘ndx) ∈
𝑈) |
| 36 | 17, 32, 32 | wunxp 9546 |
. . . . . . . 8
⊢ (𝜑 → (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) ∈ 𝑈) |
| 37 | 34, 17, 27 | wunstr 15881 |
. . . . . . . . . . . 12
⊢ (𝜑 → (Hom ‘𝑋) ∈ 𝑈) |
| 38 | 17, 37 | wunrn 9551 |
. . . . . . . . . . 11
⊢ (𝜑 → ran (Hom ‘𝑋) ∈ 𝑈) |
| 39 | 17, 38 | wununi 9528 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ ran (Hom ‘𝑋) ∈ 𝑈) |
| 40 | 34, 17, 30 | wunstr 15881 |
. . . . . . . . . . . 12
⊢ (𝜑 → (Hom ‘𝑌) ∈ 𝑈) |
| 41 | 17, 40 | wunrn 9551 |
. . . . . . . . . . 11
⊢ (𝜑 → ran (Hom ‘𝑌) ∈ 𝑈) |
| 42 | 17, 41 | wununi 9528 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ ran (Hom ‘𝑌) ∈ 𝑈) |
| 43 | 17, 39, 42 | wunxp 9546 |
. . . . . . . . 9
⊢ (𝜑 → (∪ ran (Hom ‘𝑋) × ∪ ran
(Hom ‘𝑌)) ∈
𝑈) |
| 44 | 17, 43 | wunpw 9529 |
. . . . . . . 8
⊢ (𝜑 → 𝒫 (∪ ran (Hom ‘𝑋) × ∪ ran
(Hom ‘𝑌)) ∈
𝑈) |
| 45 | | ovssunirn 6681 |
. . . . . . . . . . . . 13
⊢
((1st ‘𝑢)(Hom ‘𝑋)(1st ‘𝑣)) ⊆ ∪ ran
(Hom ‘𝑋) |
| 46 | | ovssunirn 6681 |
. . . . . . . . . . . . 13
⊢
((2nd ‘𝑢)(Hom ‘𝑌)(2nd ‘𝑣)) ⊆ ∪ ran
(Hom ‘𝑌) |
| 47 | | xpss12 5225 |
. . . . . . . . . . . . 13
⊢
((((1st ‘𝑢)(Hom ‘𝑋)(1st ‘𝑣)) ⊆ ∪ ran
(Hom ‘𝑋) ∧
((2nd ‘𝑢)(Hom ‘𝑌)(2nd ‘𝑣)) ⊆ ∪ ran
(Hom ‘𝑌)) →
(((1st ‘𝑢)(Hom ‘𝑋)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑌)(2nd ‘𝑣))) ⊆ (∪ ran
(Hom ‘𝑋) ×
∪ ran (Hom ‘𝑌))) |
| 48 | 45, 46, 47 | mp2an 708 |
. . . . . . . . . . . 12
⊢
(((1st ‘𝑢)(Hom ‘𝑋)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑌)(2nd ‘𝑣))) ⊆ (∪ ran
(Hom ‘𝑋) ×
∪ ran (Hom ‘𝑌)) |
| 49 | | ovex 6678 |
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑢)(Hom ‘𝑋)(1st ‘𝑣)) ∈ V |
| 50 | | ovex 6678 |
. . . . . . . . . . . . . 14
⊢
((2nd ‘𝑢)(Hom ‘𝑌)(2nd ‘𝑣)) ∈ V |
| 51 | 49, 50 | xpex 6962 |
. . . . . . . . . . . . 13
⊢
(((1st ‘𝑢)(Hom ‘𝑋)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑌)(2nd ‘𝑣))) ∈ V |
| 52 | 51 | elpw 4164 |
. . . . . . . . . . . 12
⊢
((((1st ‘𝑢)(Hom ‘𝑋)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑌)(2nd ‘𝑣))) ∈ 𝒫 (∪ ran (Hom ‘𝑋) × ∪ ran
(Hom ‘𝑌)) ↔
(((1st ‘𝑢)(Hom ‘𝑋)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑌)(2nd ‘𝑣))) ⊆ (∪ ran
(Hom ‘𝑋) ×
∪ ran (Hom ‘𝑌))) |
| 53 | 48, 52 | mpbir 221 |
. . . . . . . . . . 11
⊢
(((1st ‘𝑢)(Hom ‘𝑋)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑌)(2nd ‘𝑣))) ∈ 𝒫 (∪ ran (Hom ‘𝑋) × ∪ ran
(Hom ‘𝑌)) |
| 54 | 53 | rgen2w 2925 |
. . . . . . . . . 10
⊢
∀𝑢 ∈
((Base‘𝑋) ×
(Base‘𝑌))∀𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌))(((1st ‘𝑢)(Hom ‘𝑋)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑌)(2nd ‘𝑣))) ∈ 𝒫 (∪ ran (Hom ‘𝑋) × ∪ ran
(Hom ‘𝑌)) |
| 55 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st ‘𝑢)(Hom ‘𝑋)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑌)(2nd ‘𝑣)))) = (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st ‘𝑢)(Hom ‘𝑋)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑌)(2nd ‘𝑣)))) |
| 56 | 55 | fmpt2 7237 |
. . . . . . . . . 10
⊢
(∀𝑢 ∈
((Base‘𝑋) ×
(Base‘𝑌))∀𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌))(((1st ‘𝑢)(Hom ‘𝑋)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑌)(2nd ‘𝑣))) ∈ 𝒫 (∪ ran (Hom ‘𝑋) × ∪ ran
(Hom ‘𝑌)) ↔
(𝑢 ∈
((Base‘𝑋) ×
(Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st
‘𝑢)(Hom ‘𝑋)(1st ‘𝑣)) × ((2nd
‘𝑢)(Hom ‘𝑌)(2nd ‘𝑣)))):(((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))⟶𝒫 (∪ ran (Hom ‘𝑋) × ∪ ran
(Hom ‘𝑌))) |
| 57 | 54, 56 | mpbi 220 |
. . . . . . . . 9
⊢ (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st ‘𝑢)(Hom ‘𝑋)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑌)(2nd ‘𝑣)))):(((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))⟶𝒫 (∪ ran (Hom ‘𝑋) × ∪ ran
(Hom ‘𝑌)) |
| 58 | 57 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st ‘𝑢)(Hom ‘𝑋)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑌)(2nd ‘𝑣)))):(((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))⟶𝒫 (∪ ran (Hom ‘𝑋) × ∪ ran
(Hom ‘𝑌))) |
| 59 | 17, 36, 44, 58 | wunf 9549 |
. . . . . . 7
⊢ (𝜑 → (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st ‘𝑢)(Hom ‘𝑋)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑌)(2nd ‘𝑣)))) ∈ 𝑈) |
| 60 | 13, 59 | syl5eqel 2705 |
. . . . . 6
⊢ (𝜑 → (Hom ‘𝑇) ∈ 𝑈) |
| 61 | 17, 35, 60 | wunop 9544 |
. . . . 5
⊢ (𝜑 → 〈(Hom ‘ndx),
(Hom ‘𝑇)〉 ∈
𝑈) |
| 62 | | df-cco 15967 |
. . . . . . 7
⊢ comp =
Slot ;15 |
| 63 | 62, 17, 20 | wunstr 15881 |
. . . . . 6
⊢ (𝜑 → (comp‘ndx) ∈
𝑈) |
| 64 | 17, 36, 32 | wunxp 9546 |
. . . . . . 7
⊢ (𝜑 → ((((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) × ((Base‘𝑋) × (Base‘𝑌))) ∈ 𝑈) |
| 65 | 62, 17, 27 | wunstr 15881 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (comp‘𝑋) ∈ 𝑈) |
| 66 | 17, 65 | wunrn 9551 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ran (comp‘𝑋) ∈ 𝑈) |
| 67 | 17, 66 | wununi 9528 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ ran (comp‘𝑋) ∈ 𝑈) |
| 68 | 17, 67 | wunrn 9551 |
. . . . . . . . . . 11
⊢ (𝜑 → ran ∪ ran (comp‘𝑋) ∈ 𝑈) |
| 69 | 17, 68 | wununi 9528 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ ran ∪ ran (comp‘𝑋) ∈ 𝑈) |
| 70 | 17, 69 | wunpw 9529 |
. . . . . . . . 9
⊢ (𝜑 → 𝒫 ∪ ran ∪ ran (comp‘𝑋) ∈ 𝑈) |
| 71 | 62, 17, 30 | wunstr 15881 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (comp‘𝑌) ∈ 𝑈) |
| 72 | 17, 71 | wunrn 9551 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ran (comp‘𝑌) ∈ 𝑈) |
| 73 | 17, 72 | wununi 9528 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ ran (comp‘𝑌) ∈ 𝑈) |
| 74 | 17, 73 | wunrn 9551 |
. . . . . . . . . . 11
⊢ (𝜑 → ran ∪ ran (comp‘𝑌) ∈ 𝑈) |
| 75 | 17, 74 | wununi 9528 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ ran ∪ ran (comp‘𝑌) ∈ 𝑈) |
| 76 | 17, 75 | wunpw 9529 |
. . . . . . . . 9
⊢ (𝜑 → 𝒫 ∪ ran ∪ ran (comp‘𝑌) ∈ 𝑈) |
| 77 | 17, 70, 76 | wunxp 9546 |
. . . . . . . 8
⊢ (𝜑 → (𝒫 ∪ ran ∪ ran (comp‘𝑋) × 𝒫 ∪ ran ∪ ran (comp‘𝑌)) ∈ 𝑈) |
| 78 | 17, 60 | wunrn 9551 |
. . . . . . . . . 10
⊢ (𝜑 → ran (Hom ‘𝑇) ∈ 𝑈) |
| 79 | 17, 78 | wununi 9528 |
. . . . . . . . 9
⊢ (𝜑 → ∪ ran (Hom ‘𝑇) ∈ 𝑈) |
| 80 | 17, 79, 79 | wunxp 9546 |
. . . . . . . 8
⊢ (𝜑 → (∪ ran (Hom ‘𝑇) × ∪ ran
(Hom ‘𝑇)) ∈
𝑈) |
| 81 | 17, 77, 80 | wunpm 9547 |
. . . . . . 7
⊢ (𝜑 → ((𝒫 ∪ ran ∪ ran (comp‘𝑋) × 𝒫 ∪ ran ∪ ran (comp‘𝑌)) ↑pm
(∪ ran (Hom ‘𝑇) × ∪ ran
(Hom ‘𝑇))) ∈
𝑈) |
| 82 | | fvex 6201 |
. . . . . . . . . . . . . . . . 17
⊢
(comp‘𝑋)
∈ V |
| 83 | 82 | rnex 7100 |
. . . . . . . . . . . . . . . 16
⊢ ran
(comp‘𝑋) ∈
V |
| 84 | 83 | uniex 6953 |
. . . . . . . . . . . . . . 15
⊢ ∪ ran (comp‘𝑋) ∈ V |
| 85 | 84 | rnex 7100 |
. . . . . . . . . . . . . 14
⊢ ran ∪ ran (comp‘𝑋) ∈ V |
| 86 | 85 | uniex 6953 |
. . . . . . . . . . . . 13
⊢ ∪ ran ∪ ran (comp‘𝑋) ∈ V |
| 87 | 86 | pwex 4848 |
. . . . . . . . . . . 12
⊢ 𝒫
∪ ran ∪ ran
(comp‘𝑋) ∈
V |
| 88 | | fvex 6201 |
. . . . . . . . . . . . . . . . 17
⊢
(comp‘𝑌)
∈ V |
| 89 | 88 | rnex 7100 |
. . . . . . . . . . . . . . . 16
⊢ ran
(comp‘𝑌) ∈
V |
| 90 | 89 | uniex 6953 |
. . . . . . . . . . . . . . 15
⊢ ∪ ran (comp‘𝑌) ∈ V |
| 91 | 90 | rnex 7100 |
. . . . . . . . . . . . . 14
⊢ ran ∪ ran (comp‘𝑌) ∈ V |
| 92 | 91 | uniex 6953 |
. . . . . . . . . . . . 13
⊢ ∪ ran ∪ ran (comp‘𝑌) ∈ V |
| 93 | 92 | pwex 4848 |
. . . . . . . . . . . 12
⊢ 𝒫
∪ ran ∪ ran
(comp‘𝑌) ∈
V |
| 94 | 87, 93 | xpex 6962 |
. . . . . . . . . . 11
⊢
(𝒫 ∪ ran ∪
ran (comp‘𝑋) ×
𝒫 ∪ ran ∪ ran
(comp‘𝑌)) ∈
V |
| 95 | | fvex 6201 |
. . . . . . . . . . . . . 14
⊢ (Hom
‘𝑇) ∈
V |
| 96 | 95 | rnex 7100 |
. . . . . . . . . . . . 13
⊢ ran (Hom
‘𝑇) ∈
V |
| 97 | 96 | uniex 6953 |
. . . . . . . . . . . 12
⊢ ∪ ran (Hom ‘𝑇) ∈ V |
| 98 | 97, 97 | xpex 6962 |
. . . . . . . . . . 11
⊢ (∪ ran (Hom ‘𝑇) × ∪ ran
(Hom ‘𝑇)) ∈
V |
| 99 | | ovssunirn 6681 |
. . . . . . . . . . . . . . . 16
⊢
((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)) ⊆ ∪ ran
(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦)) |
| 100 | | ovssunirn 6681 |
. . . . . . . . . . . . . . . . 17
⊢
(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦)) ⊆ ∪ ran
(comp‘𝑋) |
| 101 | | rnss 5354 |
. . . . . . . . . . . . . . . . 17
⊢
((〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦)) ⊆ ∪ ran
(comp‘𝑋) → ran
(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦)) ⊆ ran ∪
ran (comp‘𝑋)) |
| 102 | | uniss 4458 |
. . . . . . . . . . . . . . . . 17
⊢ (ran
(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦)) ⊆ ran ∪
ran (comp‘𝑋) →
∪ ran (〈(1st ‘(1st
‘𝑥)), (1st
‘(2nd ‘𝑥))〉(comp‘𝑋)(1st ‘𝑦)) ⊆ ∪ ran
∪ ran (comp‘𝑋)) |
| 103 | 100, 101,
102 | mp2b 10 |
. . . . . . . . . . . . . . . 16
⊢ ∪ ran (〈(1st ‘(1st
‘𝑥)), (1st
‘(2nd ‘𝑥))〉(comp‘𝑋)(1st ‘𝑦)) ⊆ ∪ ran
∪ ran (comp‘𝑋) |
| 104 | 99, 103 | sstri 3612 |
. . . . . . . . . . . . . . 15
⊢
((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)) ⊆ ∪ ran
∪ ran (comp‘𝑋) |
| 105 | | ovex 6678 |
. . . . . . . . . . . . . . . 16
⊢
((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)) ∈ V |
| 106 | 105 | elpw 4164 |
. . . . . . . . . . . . . . 15
⊢
(((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)) ∈ 𝒫 ∪ ran ∪ ran (comp‘𝑋) ↔ ((1st
‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)) ⊆ ∪ ran
∪ ran (comp‘𝑋)) |
| 107 | 104, 106 | mpbir 221 |
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)) ∈ 𝒫 ∪ ran ∪ ran (comp‘𝑋) |
| 108 | | ovssunirn 6681 |
. . . . . . . . . . . . . . . 16
⊢
((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓)) ⊆ ∪ ran
(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦)) |
| 109 | | ovssunirn 6681 |
. . . . . . . . . . . . . . . . 17
⊢
(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦)) ⊆ ∪ ran
(comp‘𝑌) |
| 110 | | rnss 5354 |
. . . . . . . . . . . . . . . . 17
⊢
((〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦)) ⊆ ∪ ran
(comp‘𝑌) → ran
(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦)) ⊆ ran ∪
ran (comp‘𝑌)) |
| 111 | | uniss 4458 |
. . . . . . . . . . . . . . . . 17
⊢ (ran
(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦)) ⊆ ran ∪
ran (comp‘𝑌) →
∪ ran (〈(2nd ‘(1st
‘𝑥)), (2nd
‘(2nd ‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦)) ⊆ ∪ ran
∪ ran (comp‘𝑌)) |
| 112 | 109, 110,
111 | mp2b 10 |
. . . . . . . . . . . . . . . 16
⊢ ∪ ran (〈(2nd ‘(1st
‘𝑥)), (2nd
‘(2nd ‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦)) ⊆ ∪ ran
∪ ran (comp‘𝑌) |
| 113 | 108, 112 | sstri 3612 |
. . . . . . . . . . . . . . 15
⊢
((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓)) ⊆ ∪ ran
∪ ran (comp‘𝑌) |
| 114 | | ovex 6678 |
. . . . . . . . . . . . . . . 16
⊢
((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓)) ∈ V |
| 115 | 114 | elpw 4164 |
. . . . . . . . . . . . . . 15
⊢
(((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓)) ∈ 𝒫 ∪ ran ∪ ran (comp‘𝑌) ↔ ((2nd
‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓)) ⊆ ∪ ran
∪ ran (comp‘𝑌)) |
| 116 | 113, 115 | mpbir 221 |
. . . . . . . . . . . . . 14
⊢
((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓)) ∈ 𝒫 ∪ ran ∪ ran (comp‘𝑌) |
| 117 | | opelxpi 5148 |
. . . . . . . . . . . . . 14
⊢
((((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)) ∈ 𝒫 ∪ ran ∪ ran (comp‘𝑋) ∧ ((2nd
‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓)) ∈ 𝒫 ∪ ran ∪ ran (comp‘𝑌)) → 〈((1st
‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓))〉 ∈ (𝒫 ∪ ran ∪ ran (comp‘𝑋) × 𝒫 ∪ ran ∪ ran (comp‘𝑌))) |
| 118 | 107, 116,
117 | mp2an 708 |
. . . . . . . . . . . . 13
⊢
〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓))〉 ∈ (𝒫 ∪ ran ∪ ran (comp‘𝑋) × 𝒫 ∪ ran ∪ ran (comp‘𝑌)) |
| 119 | 118 | rgen2w 2925 |
. . . . . . . . . . . 12
⊢
∀𝑔 ∈
((2nd ‘𝑥)(Hom ‘𝑇)𝑦)∀𝑓 ∈ ((Hom ‘𝑇)‘𝑥)〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓))〉 ∈ (𝒫 ∪ ran ∪ ran (comp‘𝑋) × 𝒫 ∪ ran ∪ ran (comp‘𝑌)) |
| 120 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝑔 ∈ ((2nd
‘𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓))〉) = (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓))〉) |
| 121 | 120 | fmpt2 7237 |
. . . . . . . . . . . 12
⊢
(∀𝑔 ∈
((2nd ‘𝑥)(Hom ‘𝑇)𝑦)∀𝑓 ∈ ((Hom ‘𝑇)‘𝑥)〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓))〉 ∈ (𝒫 ∪ ran ∪ ran (comp‘𝑋) × 𝒫 ∪ ran ∪ ran (comp‘𝑌)) ↔ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓))〉):(((2nd ‘𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥))⟶(𝒫 ∪ ran ∪ ran (comp‘𝑋) × 𝒫 ∪ ran ∪ ran (comp‘𝑌))) |
| 122 | 119, 121 | mpbi 220 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ ((2nd
‘𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓))〉):(((2nd ‘𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥))⟶(𝒫 ∪ ran ∪ ran (comp‘𝑋) × 𝒫 ∪ ran ∪ ran (comp‘𝑌)) |
| 123 | | ovssunirn 6681 |
. . . . . . . . . . . 12
⊢
((2nd ‘𝑥)(Hom ‘𝑇)𝑦) ⊆ ∪ ran
(Hom ‘𝑇) |
| 124 | | fvssunirn 6217 |
. . . . . . . . . . . 12
⊢ ((Hom
‘𝑇)‘𝑥) ⊆ ∪ ran (Hom ‘𝑇) |
| 125 | | xpss12 5225 |
. . . . . . . . . . . 12
⊢
((((2nd ‘𝑥)(Hom ‘𝑇)𝑦) ⊆ ∪ ran
(Hom ‘𝑇) ∧ ((Hom
‘𝑇)‘𝑥) ⊆ ∪ ran (Hom ‘𝑇)) → (((2nd ‘𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥)) ⊆ (∪ ran
(Hom ‘𝑇) ×
∪ ran (Hom ‘𝑇))) |
| 126 | 123, 124,
125 | mp2an 708 |
. . . . . . . . . . 11
⊢
(((2nd ‘𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥)) ⊆ (∪ ran
(Hom ‘𝑇) ×
∪ ran (Hom ‘𝑇)) |
| 127 | | elpm2r 7875 |
. . . . . . . . . . 11
⊢
((((𝒫 ∪ ran ∪ ran (comp‘𝑋) × 𝒫 ∪ ran ∪ ran (comp‘𝑌)) ∈ V ∧ (∪ ran (Hom ‘𝑇) × ∪ ran
(Hom ‘𝑇)) ∈ V)
∧ ((𝑔 ∈
((2nd ‘𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓))〉):(((2nd ‘𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥))⟶(𝒫 ∪ ran ∪ ran (comp‘𝑋) × 𝒫 ∪ ran ∪ ran (comp‘𝑌)) ∧ (((2nd
‘𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥)) ⊆ (∪ ran
(Hom ‘𝑇) ×
∪ ran (Hom ‘𝑇)))) → (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓))〉) ∈ ((𝒫 ∪ ran ∪ ran (comp‘𝑋) × 𝒫 ∪ ran ∪ ran (comp‘𝑌)) ↑pm
(∪ ran (Hom ‘𝑇) × ∪ ran
(Hom ‘𝑇)))) |
| 128 | 94, 98, 122, 126, 127 | mp4an 709 |
. . . . . . . . . 10
⊢ (𝑔 ∈ ((2nd
‘𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓))〉) ∈ ((𝒫 ∪ ran ∪ ran (comp‘𝑋) × 𝒫 ∪ ran ∪ ran (comp‘𝑌)) ↑pm
(∪ ran (Hom ‘𝑇) × ∪ ran
(Hom ‘𝑇))) |
| 129 | 128 | rgen2w 2925 |
. . . . . . . . 9
⊢
∀𝑥 ∈
(((Base‘𝑋) ×
(Base‘𝑌)) ×
((Base‘𝑋) ×
(Base‘𝑌)))∀𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌))(𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓))〉) ∈ ((𝒫 ∪ ran ∪ ran (comp‘𝑋) × 𝒫 ∪ ran ∪ ran (comp‘𝑌)) ↑pm
(∪ ran (Hom ‘𝑇) × ∪ ran
(Hom ‘𝑇))) |
| 130 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓))〉)) = (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓))〉)) |
| 131 | 130 | fmpt2 7237 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
(((Base‘𝑋) ×
(Base‘𝑌)) ×
((Base‘𝑋) ×
(Base‘𝑌)))∀𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌))(𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓))〉) ∈ ((𝒫 ∪ ran ∪ ran (comp‘𝑋) × 𝒫 ∪ ran ∪ ran (comp‘𝑌)) ↑pm
(∪ ran (Hom ‘𝑇) × ∪ ran
(Hom ‘𝑇))) ↔
(𝑥 ∈
(((Base‘𝑋) ×
(Base‘𝑌)) ×
((Base‘𝑋) ×
(Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓))〉)):((((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) × ((Base‘𝑋) × (Base‘𝑌)))⟶((𝒫 ∪ ran ∪ ran (comp‘𝑋) × 𝒫 ∪ ran ∪ ran (comp‘𝑌)) ↑pm
(∪ ran (Hom ‘𝑇) × ∪ ran
(Hom ‘𝑇)))) |
| 132 | 129, 131 | mpbi 220 |
. . . . . . . 8
⊢ (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓))〉)):((((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) × ((Base‘𝑋) × (Base‘𝑌)))⟶((𝒫 ∪ ran ∪ ran (comp‘𝑋) × 𝒫 ∪ ran ∪ ran (comp‘𝑌)) ↑pm
(∪ ran (Hom ‘𝑇) × ∪ ran
(Hom ‘𝑇))) |
| 133 | 132 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓))〉)):((((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) × ((Base‘𝑋) × (Base‘𝑌)))⟶((𝒫 ∪ ran ∪ ran (comp‘𝑋) × 𝒫 ∪ ran ∪ ran (comp‘𝑌)) ↑pm
(∪ ran (Hom ‘𝑇) × ∪ ran
(Hom ‘𝑇)))) |
| 134 | 17, 64, 81, 133 | wunf 9549 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓))〉)) ∈ 𝑈) |
| 135 | 17, 63, 134 | wunop 9544 |
. . . . 5
⊢ (𝜑 → 〈(comp‘ndx),
(𝑥 ∈
(((Base‘𝑋) ×
(Base‘𝑌)) ×
((Base‘𝑋) ×
(Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓))〉))〉 ∈ 𝑈) |
| 136 | 17, 33, 61, 135 | wuntp 9533 |
. . . 4
⊢ (𝜑 → {〈(Base‘ndx),
((Base‘𝑋) ×
(Base‘𝑌))〉,
〈(Hom ‘ndx), (Hom ‘𝑇)〉, 〈(comp‘ndx), (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑋)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑌)(2nd ‘𝑦))(2nd ‘𝑓))〉))〉} ∈ 𝑈) |
| 137 | 16, 136 | eqeltrd 2701 |
. . 3
⊢ (𝜑 → 𝑇 ∈ 𝑈) |
| 138 | | inss2 3834 |
. . . . 5
⊢ (𝑈 ∩ Cat) ⊆
Cat |
| 139 | 138, 26 | sseldi 3601 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ Cat) |
| 140 | 138, 29 | sseldi 3601 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ Cat) |
| 141 | 1, 139, 140 | xpccat 16830 |
. . 3
⊢ (𝜑 → 𝑇 ∈ Cat) |
| 142 | 137, 141 | elind 3798 |
. 2
⊢ (𝜑 → 𝑇 ∈ (𝑈 ∩ Cat)) |
| 143 | 142, 25 | eleqtrrd 2704 |
1
⊢ (𝜑 → 𝑇 ∈ 𝐵) |