MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xp2 Structured version   Visualization version   GIF version

Theorem xp2 7203
Description: Representation of Cartesian product based on ordered pair component functions. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
xp2 (𝐴 × 𝐵) = {𝑥 ∈ (V × V) ∣ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ 𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem xp2
StepHypRef Expression
1 elxp7 7201 . . 3 (𝑥 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ 𝐵)))
21abbi2i 2738 . 2 (𝐴 × 𝐵) = {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ 𝐵))}
3 df-rab 2921 . 2 {𝑥 ∈ (V × V) ∣ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ 𝐵)} = {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ 𝐵))}
42, 3eqtr4i 2647 1 (𝐴 × 𝐵) = {𝑥 ∈ (V × V) ∣ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ 𝐵)}
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wcel 1990  {cab 2608  {crab 2916  Vcvv 3200   × cxp 5112  cfv 5888  1st c1st 7166  2nd c2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by:  unielxp  7204  xpinpreima  29952  xpinpreima2  29953
  Copyright terms: Public domain W3C validator