| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xpiun | Structured version Visualization version GIF version | ||
| Description: A Cartesian product expressed as indexed union of ordered-pair class abstractions. (Contributed by AV, 27-Jan-2020.) |
| Ref | Expression |
|---|---|
| xpiun | ⊢ (𝐵 × 𝐶) = ∪ 𝑥 ∈ 𝐵 {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsnopab 41765 | . . . . 5 ⊢ ({𝑥} × 𝐶) = {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} | |
| 2 | 1 | eqcomi 2631 | . . . 4 ⊢ {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} = ({𝑥} × 𝐶) |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐵 → {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} = ({𝑥} × 𝐶)) |
| 4 | 3 | iuneq2i 4539 | . 2 ⊢ ∪ 𝑥 ∈ 𝐵 {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} = ∪ 𝑥 ∈ 𝐵 ({𝑥} × 𝐶) |
| 5 | iunxpconst 5175 | . 2 ⊢ ∪ 𝑥 ∈ 𝐵 ({𝑥} × 𝐶) = (𝐵 × 𝐶) | |
| 6 | 4, 5 | eqtr2i 2645 | 1 ⊢ (𝐵 × 𝐶) = ∪ 𝑥 ∈ 𝐵 {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 384 = wceq 1483 ∈ wcel 1990 {csn 4177 ∪ ciun 4520 {copab 4712 × cxp 5112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-iun 4522 df-opab 4713 df-xp 5120 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |