![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xpsnopab | Structured version Visualization version GIF version |
Description: A Cartesian product with a singleton expressed as ordered-pair class abstraction. (Contributed by AV, 27-Jan-2020.) |
Ref | Expression |
---|---|
xpsnopab | ⊢ ({𝑋} × 𝐶) = {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑋 ∧ 𝑏 ∈ 𝐶)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xp 5120 | . 2 ⊢ ({𝑋} × 𝐶) = {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑋} ∧ 𝑏 ∈ 𝐶)} | |
2 | velsn 4193 | . . . 4 ⊢ (𝑎 ∈ {𝑋} ↔ 𝑎 = 𝑋) | |
3 | 2 | anbi1i 731 | . . 3 ⊢ ((𝑎 ∈ {𝑋} ∧ 𝑏 ∈ 𝐶) ↔ (𝑎 = 𝑋 ∧ 𝑏 ∈ 𝐶)) |
4 | 3 | opabbii 4717 | . 2 ⊢ {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑋} ∧ 𝑏 ∈ 𝐶)} = {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑋 ∧ 𝑏 ∈ 𝐶)} |
5 | 1, 4 | eqtri 2644 | 1 ⊢ ({𝑋} × 𝐶) = {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑋 ∧ 𝑏 ∈ 𝐶)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 = wceq 1483 ∈ wcel 1990 {csn 4177 {copab 4712 × cxp 5112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-sn 4178 df-opab 4713 df-xp 5120 |
This theorem is referenced by: xpiun 41766 |
Copyright terms: Public domain | W3C validator |