Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpsnopab Structured version   Visualization version   GIF version

Theorem xpsnopab 41765
Description: A Cartesian product with a singleton expressed as ordered-pair class abstraction. (Contributed by AV, 27-Jan-2020.)
Assertion
Ref Expression
xpsnopab ({𝑋} × 𝐶) = {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑋𝑏𝐶)}
Distinct variable groups:   𝐶,𝑎,𝑏   𝑋,𝑎,𝑏

Proof of Theorem xpsnopab
StepHypRef Expression
1 df-xp 5120 . 2 ({𝑋} × 𝐶) = {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑋} ∧ 𝑏𝐶)}
2 velsn 4193 . . . 4 (𝑎 ∈ {𝑋} ↔ 𝑎 = 𝑋)
32anbi1i 731 . . 3 ((𝑎 ∈ {𝑋} ∧ 𝑏𝐶) ↔ (𝑎 = 𝑋𝑏𝐶))
43opabbii 4717 . 2 {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑋} ∧ 𝑏𝐶)} = {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑋𝑏𝐶)}
51, 4eqtri 2644 1 ({𝑋} × 𝐶) = {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑋𝑏𝐶)}
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wcel 1990  {csn 4177  {copab 4712   × cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sn 4178  df-opab 4713  df-xp 5120
This theorem is referenced by:  xpiun  41766
  Copyright terms: Public domain W3C validator