QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  dp15lemh Unicode version

Theorem dp15lemh 1159
Description: Part of proof (1)=>(5) in Day/Pickering 1982.
Hypotheses
Ref Expression
dp15lema.1 d = (a2 v (a0 ^ (a1 v b1)))
dp15lema.2 p0 = ((a1 v b1) ^ (a2 v b2))
dp15lema.3 e = (b0 ^ (a0 v p0))
dp15lemg.4 c0 = ((a1 v a2) ^ (b1 v b2))
dp15lemg.5 c1 = ((a0 v a2) ^ (b0 v b2))
Assertion
Ref Expression
dp15lemh ((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) =< ((c0 v c1) v (b1 ^ (a0 v a1)))

Proof of Theorem dp15lemh
StepHypRef Expression
1 dp15lema.1 . . . . . 6 d = (a2 v (a0 ^ (a1 v b1)))
2 dp15lema.2 . . . . . 6 p0 = ((a1 v b1) ^ (a2 v b2))
3 dp15lema.3 . . . . . 6 e = (b0 ^ (a0 v p0))
41, 2, 3dp15lemc 1154 . . . . 5 ((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) =< (((a0 v (a2 v (a0 ^ (a1 v b1)))) ^ ((b0 ^ (a0 v p0)) v b2)) v ((a1 v (a2 v (a0 ^ (a1 v b1)))) ^ (b1 v b2)))
51, 2, 3dp15lemd 1155 . . . . 5 (((a0 v (a2 v (a0 ^ (a1 v b1)))) ^ ((b0 ^ (a0 v p0)) v b2)) v ((a1 v (a2 v (a0 ^ (a1 v b1)))) ^ (b1 v b2))) = (((a0 v a2) ^ ((b0 ^ (a0 v p0)) v b2)) v (((a1 v a2) v (a0 ^ (a1 v b1))) ^ (b1 v b2)))
64, 5lbtr 139 . . . 4 ((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) =< (((a0 v a2) ^ ((b0 ^ (a0 v p0)) v b2)) v (((a1 v a2) v (a0 ^ (a1 v b1))) ^ (b1 v b2)))
71, 2, 3dp15leme 1156 . . . 4 (((a0 v a2) ^ ((b0 ^ (a0 v p0)) v b2)) v (((a1 v a2) v (a0 ^ (a1 v b1))) ^ (b1 v b2))) =< (((a0 v a2) ^ ((b0 ^ (a0 v p0)) v b2)) v (((a1 v a2) v (b1 ^ (a0 v a1))) ^ (b1 v b2)))
86, 7letr 137 . . 3 ((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) =< (((a0 v a2) ^ ((b0 ^ (a0 v p0)) v b2)) v (((a1 v a2) v (b1 ^ (a0 v a1))) ^ (b1 v b2)))
91, 2, 3dp15lemf 1157 . . 3 (((a0 v a2) ^ ((b0 ^ (a0 v p0)) v b2)) v (((a1 v a2) v (b1 ^ (a0 v a1))) ^ (b1 v b2))) =< (((a1 v a2) ^ (b1 v b2)) v (((a0 v a2) ^ (b0 v b2)) v (b1 ^ (a0 v a1))))
108, 9letr 137 . 2 ((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) =< (((a1 v a2) ^ (b1 v b2)) v (((a0 v a2) ^ (b0 v b2)) v (b1 ^ (a0 v a1))))
11 dp15lemg.4 . . 3 c0 = ((a1 v a2) ^ (b1 v b2))
12 dp15lemg.5 . . 3 c1 = ((a0 v a2) ^ (b0 v b2))
131, 2, 3, 11, 12dp15lemg 1158 . 2 (((a1 v a2) ^ (b1 v b2)) v (((a0 v a2) ^ (b0 v b2)) v (b1 ^ (a0 v a1)))) = ((c0 v c1) v (b1 ^ (a0 v a1)))
1410, 13lbtr 139 1 ((a0 v a1) ^ ((b0 ^ (a0 v p0)) v b1)) =< ((c0 v c1) v (b1 ^ (a0 v a1)))
Colors of variables: term
Syntax hints:   = wb 1   =< wle 2   v wo 6   ^ wa 7
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-ml 1120  ax-arg 1151
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-le1 130  df-le2 131
This theorem is referenced by:  dp15  1160
  Copyright terms: Public domain W3C validator