| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > mlduali | Unicode version | ||
| Description: Inference version of dual of modular law. |
| Ref | Expression |
|---|---|
| mlduali.1 |
|
| Ref | Expression |
|---|---|
| mlduali |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-a2 31 |
. . . 4
| |
| 2 | 1 | ran 78 |
. . 3
|
| 3 | ancom 74 |
. . 3
| |
| 4 | mlduali.1 |
. . . 4
| |
| 5 | 4 | mldual2i 1125 |
. . 3
|
| 6 | 2, 3, 5 | 3tr 65 |
. 2
|
| 7 | ancom 74 |
. . 3
| |
| 8 | 7 | ror 71 |
. 2
|
| 9 | orcom 73 |
. 2
| |
| 10 | 6, 8, 9 | 3tr 65 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-ml 1120 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
| This theorem is referenced by: ml3le 1127 modexp 1150 dp15lema 1152 dp35leme 1171 xdp15 1197 xxdp15 1200 xdp45lem 1202 xdp43lem 1203 xdp45 1204 xdp43 1205 3dp43 1206 testmod2 1213 testmod2expanded 1214 |
| Copyright terms: Public domain | W3C validator |